首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设实二次型f(x1,x2,x3)=xATx的秩为2,且α1=(1,0,0)T是(A一2E)x=0的解,α2=(0,一1,1)T是(A一6E)x=0的解. 写出该二次型;
设实二次型f(x1,x2,x3)=xATx的秩为2,且α1=(1,0,0)T是(A一2E)x=0的解,α2=(0,一1,1)T是(A一6E)x=0的解. 写出该二次型;
admin
2016-01-11
70
问题
设实二次型f(x
1
,x
2
,x
3
)=xA
T
x的秩为2,且α
1
=(1,0,0)
T
是(A一2E)x=0的解,α
2
=(0,一1,1)
T
是(A一6E)x=0的解.
写出该二次型;
选项
答案
由于[*]故所求的二次型为f(x
1
,x
2
,x
3
)=2x
1
2
+3x
2
2
+3x
3
2
一6x
2
x
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/xv34777K
0
考研数学二
相关试题推荐
设A=且存在三阶非零矩阵B,使得AB=O,则α=________,b=________.
设A=求A的特征值与特征向量,并判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,……,Aαn-1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明:(1)AB=BA:(2)存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设矩阵A=(1)若A有一个特征值为3,求a;(2)求可逆矩阵P,使得PTA2P为对角矩阵。
设f(x)为微分方程yˊ-xy=g(x)满足y(0)=1的解,其中g(x)=,则有()
设A是3阶实对称矩阵,二次型f(x1,x2,x3)=xTAx经正交变换x=Qy后的标准形为y12+y22-y32,则二次型g(x1,x2,x3)=xTAA*x经可逆线性变换x=Py后的规范形为()
随机试题
冰雪道路对安全行车的主要影响是________。
中心静脉压(CVP)监测
A.≤5cfu/m2B.≤10cfu/m2C.≤15cfu/m2D.≤200cfu/m2E.≤500cfu/m2供应室无菌区空气的细菌监测标准()
牧区养犬不注意饮食卫生有可能感染
A.疏肝B.止痉C.升阳D.解毒E.清肺薄荷除疏散风热外,又能()
技术资料及图纸不包括()。
Theearth,ourhome,isveryimportancefor【M1】__________allofus.Nobodycanlivewithher.And【M2】__________ifwelovehe
“民主有利于促进和谐。专断有利于提高效率。”你如何理解这句话?
Inthelate1960’s,manypeopleinNorthAmericaturnedtheirattentiontoenvironmentalproblems,andnewsteel-and-glassskysc
TheeconomyoftheUnitedStatesafter1952wastheeconomyofawell-fed,almostfullyemployedpeople.Despiteoccasionalalar
最新回复
(
0
)