首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设实二次型f(x1,x2,x3)=xATx的秩为2,且α1=(1,0,0)T是(A一2E)x=0的解,α2=(0,一1,1)T是(A一6E)x=0的解. 写出该二次型;
设实二次型f(x1,x2,x3)=xATx的秩为2,且α1=(1,0,0)T是(A一2E)x=0的解,α2=(0,一1,1)T是(A一6E)x=0的解. 写出该二次型;
admin
2016-01-11
80
问题
设实二次型f(x
1
,x
2
,x
3
)=xA
T
x的秩为2,且α
1
=(1,0,0)
T
是(A一2E)x=0的解,α
2
=(0,一1,1)
T
是(A一6E)x=0的解.
写出该二次型;
选项
答案
由于[*]故所求的二次型为f(x
1
,x
2
,x
3
)=2x
1
2
+3x
2
2
+3x
3
2
一6x
2
x
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/xv34777K
0
考研数学二
相关试题推荐
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,……,Aαn-1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
设A,B为n阶矩阵,且r(A)+r(B)<n.证明:A,B有公共的特征向量.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值.对应特征向量为(-1,0,1)T.(1)求A的其他特征值与特征向量;(2)求A.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设A为n阶非零矩阵,且A2=A,r(A)=r(0<r<n).求|5E+A|.
设函数f(x)是以T为周期的连续函数.(Ⅰ)证明:∫0x(t)dt可以表示成一个以T为周期的连续函数与kx之和,并求常数k;(Ⅱ)计算∫0xf(t)dt.
设A为3阶实对称矩阵,β=(3,3,3)T,方程组Ax=β的通解为k1(-1,2,-1)T+k2(0,-1,1)T+(1,1,1)T(k1,k2为任意常数).求正交矩阵Q,使得Q-1AQ=A.
设当x→0时,是等价的无穷小,则常数a=__________.
随机试题
试用力法解下图(a)所示结构,绘制弯矩图并求B点的水平位移和BC梁中点的竖向位移。
腰椎间盘最常见的突出和退变间隙依次排列为
患者,男,50岁。因手术中失血过多,医嘱:输入库血1200ml,输血后病人出现手术部位渗血较多,皮肤、粘膜多处可见明显淤点、淤斑,手足抽搐,血压下降。导致的原因主要是
具有疼痛彻骨,难消,难溃,难敛特点的疾病是()具有局部光软无头,红肿疼痛,易肿,易脓,易溃,易敛特点的疾病是()
A.脓肿B.溃疡C.空洞D.化生E.伪膜幼稚的成纤维细胞损伤后转变成骨细胞的过程是
房地产经纪服务合同纠纷的解决方式不包括()。
下列属于有机胶凝材料的是()。
对于基金管理公司的重大事项的报备,国务院证券监督管理机构应当自受理申请之日起()日内做出批准或者不予批准的决定,并通知申请人;不予批准的,应当说明理由。
Thecountry’sinadequatementalhealthsystemgetsthemostattentionafterinstancesofmassviolencethatthenationhasseen
THETRIANGLEFACTORYFIRE1ThefireattheTriangleWaistCompanyinNewYorkCitywasoneoftheworstworkplacedisastersi
最新回复
(
0
)