首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x=0处n(n≥2)阶可导且=e4,求f(0),f’(0),…,f(n)(0).
设f(x)在x=0处n(n≥2)阶可导且=e4,求f(0),f’(0),…,f(n)(0).
admin
2019-04-22
64
问题
设f(x)在x=0处n(n≥2)阶可导且
=e
4
,求f(0),f’(0),…,f
(n)
(0).
选项
答案
1)先转化已知条件.由[*]=e
4
知 [*] 再用当x→0时的等价无穷小因子替换ln[1+f(x)]~f(x),可得[*]=4. 2)用o(1)表示当x→0时的无穷小量,由当x→0时的极限与无穷小的关系[*]=4+o(1),并利用x
n
o(1)=o(x
n
)可得f(x)=4x
n
+o(x
n
).从而由泰勒公式的唯一性即知 f(0)=0,f’(0)=0,…,f
(n-1)
(0)=0,[*]=4,故f
(n)
(0)=4n!.
解析
转载请注明原文地址:https://kaotiyun.com/show/xxV4777K
0
考研数学二
相关试题推荐
设n阶方阵A满足A2+3A一2E=O,求A-1及(A+E)-1.
一复杂的系统由100个相互独立起作用的部件组成,在整个运行期间每个部件损坏的概率为0.10,为了使整个系统起作用,至少必须有85个部件正常工作,求整个系统起作用的概率.
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明:存在ξ∈(0,1),使得f’(ξ)=1;
已知f(x,y)=,设D为由x=0、y=0及x+y=t所围成的区域,求F(t)=
已知齐次线性方程组其中.试讨论a1,a2,…,an和b满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设α,β都是n维列向量时,证明:①αβT的特征值为0,0,…,0,βTα.②如果α不是零向量,则α是αβT的特征向量,特征值为βTα.
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T.(1)计算ABT与ATB;(2)求矩阵ABT的秩r(ABT);(3)设C=E一ABT,其中E为n阶单位阵.证明:CTC=E一BAT—ABT+BBT的充要条件是ATA=1.
已知齐次线性方程组其中≠0,试讨论a1,a2,…,an和b满足何种关系时.(1)方程组仅有零解;(2)方程组有非零解,在有非零解时,求此方程组的一个基础解系.
从一艘破裂的油轮中渗漏出来的油,在海面上逐渐扩散形成油层.设在扩散的过程中,其形状一直是一个厚度均匀的圆柱体,其体积也始终保持不变.已知其厚度h的减少率与h3成正比,试证明:其半径r的增加率与r3成反比.
随机试题
Thestoriesconcernedordinarypeopledoingordinarythingswithjustabitofinner________,andfeaturedanomniscientnarrato
在领导活动的基本特征中,权力是______。
关于电容电流的叙述,正确的是
抗精神失常药氯丙嗪俗称
遇到脉搏短绌病人,以下操作不正确的是
财务顾问对目标公司提供的服务有( )。
某市有A、B两个安装项目,现知甲单位单独完成A项月需要12天,单独完成B项目需要60天:乙单位单独完成A项目需要36天,单独完成B项目需要48天。由于工期紧张,两个项目由甲、乙两个单位合作完成,至少需要几天?
proactivefiscalpolicy
A、第一次去长城B、骑车去长城C、能见到老朋友D、看不同的风景B从“一想到今天要跟朋友们一起骑车去长城就特别兴奋”可知“我”兴奋的原因,所以选B。
•Youwillhearthreetelephoneconversationsormessages.•Writeoneortwowordsoranumberinthenumberedspacesontheno
最新回复
(
0
)