首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数u=x3+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值与最小值。
求函数u=x3+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值与最小值。
admin
2019-01-19
64
问题
求函数u=x
3
+y
2
+z
2
在约束条件z=x
2
+y
2
和x+y+z=4下的最大值与最小值。
选项
答案
方法一:可以利用拉格朗日乘数法求极值,两个约束条件的情况下,作拉格朗日函数 F(x,y,z,λ,μ) =x
2
+y
2
+z
2
+λ(x
2
+y
2
一z)+μ(z+y+z一4), 令 [*] 解方程组得 (x
1
,y
1
,z
1
)=(1,1,2),(x
2
,y
2
,z
2
)=(一2,一2,8)。 代入原函数,求得最大值为72,最小值为6。 方法二:问题可转化为一个约束函数的情况,求u=x
2
+y
2
+x
4
+2x
2
y
2
+y
4
在条件x+y+x
2
+y
2
=4下的最值,设 F(x,y,λ)=u=x
4
+y
4
+2x
2
y
2
+x
2
+y
2
+λ(x+y+x
2
+y
2
一4), 令 [*] 解得(x
1
,y
1
)=(1,1),(x
2
,y
2
)=(一2,一2),代入z=x
2
+y
2
,得z
1
=2,z
1
=8。 同理可得原函数最大值为72,最小值为6。
解析
转载请注明原文地址:https://kaotiyun.com/show/y6P4777K
0
考研数学三
相关试题推荐
设矩阵A=(aij)n×n的秩为n,aij的代数余子式为Aij(i,j=1,2,…,n).记A的前r行组成的r×n矩阵为B,证明:向量组是齐次线性方程组Bχ=0的基础解系.
设4元齐次线性方程组(Ⅰ)为,又已知某齐次线性方程组(Ⅱ)的通解为志k1(0,1,1,0)T+k2(-1,2,2,1)T.(1)求线性方程组(Ⅰ)的基础解系;(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解
问λ为何值时,线性方程组有解,并求出解的一般形式.
求幂级数的收敛域及和函数.
差分方程6yt+1+9yt=3的通解为_______.
从均值为μ,方差为σ2>0的总体中分别抽取容量为n1和n2的两个独立样本,样本均值分别记为和.试证对任意满足a+b=1的常数a、b,T=都是μ的无偏估计.并确定a、b,使D(T)达到最小.
设区域D由曲线y=一x3,直线x=1与y=1围成,计算二重积分
求f(x)=的极值.
微分方程满足条件y(2)=0的特解是().
微分方程yˊˊ+2yˊ+2y=e-xsinx的特解形式为()
随机试题
简述辛亥革命以后,南京临时政府对文书工作进行的改革。
市场需求预测的方法有:(1)__________。(2)__________。(3)__________。(4)__________。(5)__________。(6)__________。(7)__________。
交叉弹性可以是正值,也可以是负值。如为正值,则此两项产品为_________;相反,如果交叉弹性为负值,则此两项产品为互补品,也就是说,当产品Y的价格上涨时,产品X的需求量会下降。
直肠癌多见于()
下列主体中,应当向持票人承担票据责任的有()。
创新教育是以()为基本价值取向的教育。
关于《荷马史涛》的叙述不正确的是()。
下列不是实时操作系统的是()。
Marshaconfessedthatsheknewnothingofcomputer.
DoesthepublisherofDouglasStarr’sexcellentBlood—AnEpicHistoryofMedicineandCommerceactuallyexpecttosellmanycopi
最新回复
(
0
)