首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,|f(x)dx=0.证明: 存在η∈(a,b),使得f"(η)-3f’(η)+2f(η)=0.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,|f(x)dx=0.证明: 存在η∈(a,b),使得f"(η)-3f’(η)+2f(η)=0.
admin
2019-11-25
66
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,|f(x)dx=0.证明:
存在η∈(a,b),使得f"(η)-3f’(η)+2f(η)=0.
选项
答案
令g(x)=e
-x
f(x),g(a)=g(c)=g(b)=0,由罗尔定理,存在η
1
∈(x,c),η
2
∈(c,b),使得g’(η
1
)=g’(η
2
)=0,而g’(x)=e
-x
[f’(x)-f(x)]且e
-x
≠0,所以f’(η
1
)-f(η
1
)=0,f’(η
2
)-f(η
2
)=0. 令φ(x)=e
-2x
[f’(x)-f(x)],φ(η
1
)=φ(η
2
)=0,由罗尔定理,存在η∈(η
1
,η
2
)[*](a,b),使得φ’(η)=0,而φ’(x)=e
-2x
[f”(x)-3f’(x)+2f(x)]且e
-2x
≠0,所以f”(η)-3f’(η)+2f(η)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/yED4777K
0
考研数学三
相关试题推荐
设a0=0,a1=1,an+1=3an+4an+1(n=1,2,…).(1)令(2)求幂级数的收敛半径、收敛区间、收敛域及和函数.
求极限
设二维随机变量(X,Y)的联合概率密度令Z=max{X,Y},求:(1)Z的分布函数;(2)在X>x(x>0)的条件下,求P{Z≤z|X>x}.
如图1.3—1所示,设曲线方程为梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0.证明:
设f(x)在上具有连续的二阶导数,且f’(0)=0.证明:存在ξ,η,ω∈使得f’(ξ)=
设平面区域D由x=0,y=0,x+y=,x+y=1围成,若,则I1,I2,I3的大小顺序为()
将抛物线y=x2-x与x轴及直线x=c(c>1)所围成平面图形绕x轴转一周,所得旋转体的体积vx等于弦OP(P为抛物线与直线x=c的交点)绕x轴旋转所得锥体的体积v锥,则c的值为_________________________。
设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
讨论下列函数在点(0,0)处的①偏导数的存在性;②函数的连续性;③函数的可微性.
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有命题①(Ⅰ)的解必是(Ⅱ)的解;②(Ⅱ)的解必是(Ⅰ)的解;③(Ⅰ)的解不一定是(Ⅱ)的解;④(Ⅱ)的解不一定是(Ⅰ)的解.其中正确的是()
随机试题
关于建设工程未经竣工验收而发包人擅自使用的质量责任的说法,正确的是()。
属于完全性再生的是
蕈样肉芽肿是发生在哪个部位的T细胞淋巴瘤
下列哪项实验检查,对诊断急性肾炎最有意义
下列关于苯甲酸与苯甲酸钠防腐剂的错误表述为
会计从业资格是从事会计工作的“入门证”。()
下列个人收入,属于纳税人应按“劳务报酬所得”缴纳个人所得税的有()。
在基金转换中,投资者T日转换成功后,正常情况下,基金注册登记入于()日,为投资者的转出及转入基金份额分别进行权益扣除和权益增加。
美国金融风暴震动全球,如冰岛国家破产,乌克兰股市当年累计下滑80%,英国股市暴跌,英国首富印度籍钢铁大王米塔尔钢铁公司股价出现暴跌。这些现象反映()。
Picasso’sartwasnotjustapleasantdistraction.Theartistbelievedthatarthelpstopenetratefurtherintotheworldandin
最新回复
(
0
)