首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)在(-1,1)内具有二阶连续导数,且f”(x)≠0,试证: 对(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;
设y=f(x)在(-1,1)内具有二阶连续导数,且f”(x)≠0,试证: 对(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;
admin
2021-02-25
34
问题
设y=f(x)在(-1,1)内具有二阶连续导数,且f”(x)≠0,试证:
对(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;
选项
答案
对(-1,1)内任一x≠O,由拉格朗日中值定理知,[*],使 f(x)=f(0)+xf’(θ(x)x). 因为f”(x)在(-1,1)内连续且f”(x)≠0,所以f”(x)在(-1,1)内不变号,即f’(x)单调,故θ(x)是唯一的.
解析
转载请注明原文地址:https://kaotiyun.com/show/yK84777K
0
考研数学二
相关试题推荐
过点(0,1)作曲线L:y=lnx的切线,切点为A,又L与x轴交于B点,区域D由L与直线AB围成.求区域D的面积及D绕x轴旋转一周所得旋转体的体积.
计算二重积分,其中D={(r,θ)|0≤r≤secθ,}.
已知函数f(x)=f(x)。若x→0时,f(x)-a与xk是同阶无穷小量,求常数k的值。
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并满足xf’(x)=f(x)+x2(a为常数),又曲线y=f(x)与x=1,y=0所围的图形s的面积值为2。求函数f(x)。并问a为何值时,图形S绕x轴旋转一周所得旋转体的体积最小.
设A,B均为n阶矩阵,|A|=2,|B|=-3,则|2A*B-1|=_______.
落在平静水面的石头,产生同心波纹,若最外一圈波半径的增大率总是6m/s,问在2s末扰动水面面积的增大率为___________m2/s.
求下列方程通解或满足给定初始条件的特解:1)y+1=χeχ+y.2)χ+χ+sin(χ+y)=03)y′+ytanχ=cosχ4)(1+χ)y〞+y′=05)yy〞-(y′)2=y4,y(0)=1,y′(0
某人的食量是2500卡/天(1卡=4.1868焦),其中1200卡/天用于基本的新陈代谢.在健身运动中,他所消耗的为16卡/千克/天乘以他的体重.假设以脂肪形式储存的热量百分之百有效,而一千克脂肪含热量10000卡,求该人体重怎样随时间变化.
设z=f(t2,e2t),其中f二阶连续可偏导,求.
设(2E-C-1B)AT=C-1,其中E是4阶单位矩阵,AT是4阶矩阵A的转置矩阵,且求A.
随机试题
A、Theheavymedicaldevice.B、Thetrafficcongestion.C、Thelowpayment.D、Theanxietyattack.D短文结尾处指出,焦虑是另一个常见的问题,然后讲话者通过亲身经历来
电解质包括()。
前斜角肌
CT显示中耳胆固醇肉芽肿患者肉芽肿位于鼓窦,听骨链正常,乳突气化可,采取治疗方法为
企业法人内部单独核算的部门,可以申请开立基本存款账户。()
以下不属于全面风险管理三个维度的是()。
下列项目中,应计算缴纳增值税的有()。
Smith医生叫John戒酒。
在2011年世界知识产权组织公布的公司全球专利申请排名中。中国中兴公司提交了2826项专利申请,日本松下公司申请了2463项,中国华为公司申请了1831项,分别排名前三位。从这三个公司申请的专利中至少拿出多少项专利,才能保证拿出的专利一定有2110项是同一
A、Itiseasytotalkaboutthemoneyproblembeforemarriage.B、Itiswisetoshowyourentirepropertystatusbeforemarriage.
最新回复
(
0
)