首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)在(-1,1)内具有二阶连续导数,且f”(x)≠0,试证: 对(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;
设y=f(x)在(-1,1)内具有二阶连续导数,且f”(x)≠0,试证: 对(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;
admin
2021-02-25
58
问题
设y=f(x)在(-1,1)内具有二阶连续导数,且f”(x)≠0,试证:
对(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;
选项
答案
对(-1,1)内任一x≠O,由拉格朗日中值定理知,[*],使 f(x)=f(0)+xf’(θ(x)x). 因为f”(x)在(-1,1)内连续且f”(x)≠0,所以f”(x)在(-1,1)内不变号,即f’(x)单调,故θ(x)是唯一的.
解析
转载请注明原文地址:https://kaotiyun.com/show/yK84777K
0
考研数学二
相关试题推荐
(2001年试题,七)设函数f(x),g(x)满足f’(x)=g(x),g’(x)=2ex一f(x),且f(0)=0,g(0)=2,求
(2012年试题,三)已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’(x)+f(x)=2ex求f(x)的表达式;
(1)证明方程xn+xn-1+…+x=1(n为大于1的整数),在区间(1/2,1)内有且仅有一个实根;(2)记(1)中的实根为xn,证明存在,并求此极限.
设平面区域D由直线x=3y,y=3x及x+y=8围成,计算x2dxdy的值。
[2010年]设A=,存在正交矩阵Q使得QTAQ为对角矩阵,若Q的第1列为[1,2,1]T,求a,Q.
(2003年)设位于第一象限的曲线y=f(χ)过点,其上任一点P(χ,y)处的法线与y轴的交点为Q,且线段PQ被χ轴平分.(1)求曲线y=f(χ)的方程;(2)已知曲线y=sinχ在[0,π]上的弧长为l,试用l表示曲线y=f(χ)的弧
求下列方程通解或满足给定初始条件的特解:1)y+1=χeχ+y.2)χ+χ+sin(χ+y)=03)y′+ytanχ=cosχ4)(1+χ)y〞+y′=05)yy〞-(y′)2=y4,y(0)=1,y′(0
函数的间断点及类型是()
设f(χ)在[0,1]连续,且对任意χ,y∈[0,1]均有|f(χ)-f(y)|≤M|χ-y|,M为正的常数,求证:
随机试题
可以治疗湿热下注,赤白带下的药物是()既能补精,又能助阳,治疗肝肾亏虚诸证的药物是()
(2008)关于20世纪前期国外发展的卫星城镇,以下叙述哪项有误?
有两种理想气体,第一种的压强为P1,体积为V1,温度为V1,总质量为M1,摩尔质量为μ1;第二种的压强为P2,体积为C2,温度为T2,总质量为M2,摩尔质量为μ2。当V1=V2,T1=T2,M1=M2时,则( )。
一般灯具的安装不符合要求的是()
实施电子转单后,依据《口岸查验管理规定》相关规定,检验检疫机构( )。
《贷款通则》从()起施行。
人民代表大会制度的核心内容和实质是()。
在IE地址栏输入的“http://www.sundxs.com/”中,http表示______。
______isnotawayofword-formation.
Allofthetechnologicaladvancesthathaveincreasedthequalityofmusichavenotchangedthefundamentalimpactofrecordedm
最新回复
(
0
)