首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知a是常数,且矩阵可经初等列变换化为矩阵 (I)求a; (Ⅱ)求满足AP=B的可逆矩阵P.
已知a是常数,且矩阵可经初等列变换化为矩阵 (I)求a; (Ⅱ)求满足AP=B的可逆矩阵P.
admin
2019-08-01
54
问题
已知a是常数,且矩阵
可经初等列变换化为矩阵
(I)求a;
(Ⅱ)求满足AP=B的可逆矩阵P.
选项
答案
(I)由题意知,|A|=|B|,且r(A)=r(B).由于 [*] 因此可得a=2. (Ⅱ)求满足AP=B的可逆矩阵P,即求方程组Ax=B的解. [*] 令P=(ξ
1
,ξ
2
,ξ
3
),B=(β
1
,β
2
,β
3
),x=(x
1
,x
2
,x
3
), 则可得方程组Ax
1
=β
1
的基础解系为(一6,2,1)
T
,特解为(3,一1,0)
T
; 得方程组Ax
2
=β
2
的基础解系为(一6,2,1)
T
,特解为(4,一1,0)
T
; 得方程组Ax
3
=β
3
的基础解系为(一6,2,1)
T
,特解为(4,一1,0)
T
. 从而可知三个非齐次方程组的通解为 ξ
1
=x
=k
1
(一6,2,1)
T
+(3,一1,0)
T
; ξ
2
=x
2
=k
2
(一6,2,1)
T
+(4,一1,0)
T
; ξ
3
=x
3
=k
3
(一6,2,1)
T
+(4,一1,0)
T
. [*] 由P为可逆矩阵,即|P|≠0,可知k
2
≠k
3
.因此 [*]k
1
,k
2
,k
3
为任意常数,且k
2
≠k
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/FDN4777K
0
考研数学二
相关试题推荐
对二元函数z=f(x,y),下列结论正确的是().
设函数f(x)连续,下列变上限积分函数中,必为偶函数的是().
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
设齐次方程组(Ⅰ)有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
证明:当x>1时0<(x-1)2.
设a为常数,求
曲线上对应点t=2处的切线方程为_______.
设f(x)=又a≠0,问a为何值时存在.
已知A=可对角化,求可逆矩阵P及对角矩阵Λ,使P-1AP=Λ.
用配方法化下列二次型为标准形:f(χ1,χ2,χ3)=2χ1χ2+2χ1χ3+6χ2χ3.
随机试题
下列关于膀胱位置的叙述,正确的是()
金属导体的电阻R=U/I,因此可以说()。
乳突摄影体位与角度的组合,正确的是
男,30岁。低热、盗汗、咳嗽、血痰1个月。胸片示右上肺小片状浸润影,密度不均。确诊应选择的检查是
最初的生命可能就是一群偶然聚集在一起的有机物。之后,这群偶遇的有机物有了明确的分工。蛋白质负责提供支架和生产能量,DNA和RNA则保存和实施群体的“复制图纸”,磷脂分子和蛋白质还联手建了细胞膜。正是这层神奇的膜,将有机物集群包裹在一个稳定的环境中。生命的单
下面都属于指事字的是()。(北京语言大学2015)
AnExcitingNewWorldOpeningtoCivilianScientistsItishardtotrackthebluewhale,theocean’slargestcreature,which
Ihavenoalternativebuttoreporthimtothelocalpolice.
Whatisitthatbringsaboutsuchanintimateconnectionbetweenlanguageandthinking?Istherenothinkingwithouttheuseof
推荐我的是一位教授。
最新回复
(
0
)