首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知a是常数,且矩阵可经初等列变换化为矩阵 (I)求a; (Ⅱ)求满足AP=B的可逆矩阵P.
已知a是常数,且矩阵可经初等列变换化为矩阵 (I)求a; (Ⅱ)求满足AP=B的可逆矩阵P.
admin
2019-08-01
93
问题
已知a是常数,且矩阵
可经初等列变换化为矩阵
(I)求a;
(Ⅱ)求满足AP=B的可逆矩阵P.
选项
答案
(I)由题意知,|A|=|B|,且r(A)=r(B).由于 [*] 因此可得a=2. (Ⅱ)求满足AP=B的可逆矩阵P,即求方程组Ax=B的解. [*] 令P=(ξ
1
,ξ
2
,ξ
3
),B=(β
1
,β
2
,β
3
),x=(x
1
,x
2
,x
3
), 则可得方程组Ax
1
=β
1
的基础解系为(一6,2,1)
T
,特解为(3,一1,0)
T
; 得方程组Ax
2
=β
2
的基础解系为(一6,2,1)
T
,特解为(4,一1,0)
T
; 得方程组Ax
3
=β
3
的基础解系为(一6,2,1)
T
,特解为(4,一1,0)
T
. 从而可知三个非齐次方程组的通解为 ξ
1
=x
=k
1
(一6,2,1)
T
+(3,一1,0)
T
; ξ
2
=x
2
=k
2
(一6,2,1)
T
+(4,一1,0)
T
; ξ
3
=x
3
=k
3
(一6,2,1)
T
+(4,一1,0)
T
. [*] 由P为可逆矩阵,即|P|≠0,可知k
2
≠k
3
.因此 [*]k
1
,k
2
,k
3
为任意常数,且k
2
≠k
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/FDN4777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]连续,且f(0)=f(1),证明:在[0,1]上至少存在一点ξ,使得
求函数y=x+的单调区间、极值点及其图形的凹凸区间与拐点.
设A为实矩阵,证明r(ATA)=r(A).
设A是m×n矩阵.证明:r(A)=1存在m维和n维非零列向量α和β,使得A=αβT.
设n维向量组α1,α2,…,αs线性相关,并且α1≠0,证明存在1<k≤s,使得αk可用α1,…,αk-1线性表示.
在极坐标变换下将f(x,y)dσ化为累次积分,其中D为:x2+y2≤2ax与x2+y2≤2ay的公共部分(a>0).
设f(x)在[a,b]上有二阶连续导数,求证:∫abf(x)dx=(b-a)[f(a)+f(b)]+∫abf’’(x)(x-a)(x-b)dx.
设A是3阶实对称矩阵,满足A2+2A=0,并且r(A)=2.(1)求A的特征值.(2)当实数后满足什么条件时A+kE正定?
设f(x)在x>0上有定义,且对任意正实数x,yf(xy)=xf(y)+yf(x),f’(1)=2,试求f(x).
[*]=1/6。方法二:因sinx=x-[*]x3+o(x3),sin(sinx)=sinx-[*]sin3x+o(sin3x)。则[*]
随机试题
Whatjobdidthemangetfirst?Hegotthefirstjobas_________________.
形成视网膜裂孔危险性最小的周边视网膜变性是
患者,男性,65岁。诊断为胆道泥沙样结石,拟行胆总管空肠RouxenY吻合术。WBC11.5×109/L,中性粒细胞0.75。血清总胆红素162μmol/L,谷丙转氨酶215U/L,凝血酶原时间(PT)18s。患者口服灌肠液的时间为
超额存款准备金主要用于()。
管理信息的特征包括()。
哥白尼的“日心说”与当时的宗教思想、占统治地位的亚里士多德的物理学以及人们的“常识”均相抵触,一开始遭到许多人的反对,直到牛顿发现万有引力定律之后才逐步被天文学家们承认。随着现代科技的发展,“日心说”也已经被否定,太阳只是银河系中一颗普通的恒星。由此说明(
Intheolddays,childrenwerefamiliarwithbirthanddeathaspartoflife.ThisisperhapsthefirstgenerationofAmericany
【B1】【B8】
A、Itcanavoidthenecessityofcarryinglargeamountofcash.B、Youneedn’tpurchaselargeamountsoftraveler’schecks.C、You
Lookattheboxfilesonthisshelf.Theyareintheofficeofthewomanwhoproducesthemonthlycompanynewsletter.Forquesti
最新回复
(
0
)