首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型 f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn+anx1)2. a1,2,…,an满足什么条件时f(x1,x2,…,xn)正定?
已知二次型 f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn+anx1)2. a1,2,…,an满足什么条件时f(x1,x2,…,xn)正定?
admin
2020-03-16
50
问题
已知二次型
f(x
1
,x
2
,…,x
n
)=(x
1
+a
1
x
2
)
2
+(x
2
+a
2
x
3
)
2
+…+(x
n
+a
n
x
1
)
2
.
a
1
,
2
,…,a
n
满足什么条件时f(x
1
,x
2
,…,x
n
)正定?
选项
答案
记y
1
=x
1
+a
1
x
2
,y
2
=x
2
+a
2
x
3
,…,y
n
=x
n
+a
n
x
1
,则 [*] 简记为Y=AX. 则f(x
1
,x
2
,…,x
n
)=Y
T
Y=X
T
A
T
AX.于是,实对称矩阵A
T
A就是f(x
1
,x
2
,…,x
n
)的矩阵.从而f正定就是A
T
A正定. A
T
A正定的充要条件是A可逆.计算出|A|=1+(-1)
n-1
a
1
a
2
…a
n
.于是,f正定的充要条件为 a
1
a
2
…a
n
≠(-1)
n
.
解析
转载请注明原文地址:https://kaotiyun.com/show/yKA4777K
0
考研数学二
相关试题推荐
[2004年]设z=f(x2一y2,exy),其中f具有连续二阶偏导数,求.
[2015年]若函数z=z(x,y)由方程ex+2y+3z+xyz=1确定,则dz∣(0,0)=________.
[2004年]设e<a<b<e2,证明ln2b—ln2a>4(b一a)/e2.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并满足(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2,求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明在[一a,a]上至少存在一点η,使a3f"(η)=3∫一aaf(x)dx.
(2006年)设数列{χn}满足0<χ1<π,χn+1=sinχn(n=1,2,…).(Ⅰ)证明χn存在,并求该极限;(Ⅱ)
已知n阶矩阵A满足A3=E.(1)证明A2-2A-3E可逆.(2)证明A2+A+2E可逆.
设实对称矩阵,求可逆矩阵P,使P-1AP为对角矩阵,并计算行列式|A—E|的值.
设矩阵A=可逆,向量α=是矩阵A*的一个特征向量,λ是α对应的特征值,其中A*是A的伴随矩阵.试求a、b和λ的值.
随机试题
下列不是心理健康内容的是()
某装修公司为业主李某装修完房屋后,因李某欠某装修公司装修款8000元人民币,为此某装修公司诉至法院。法院受理后,适用简易程序由审判员赵某审理。在审理过程中,赵某发现案情复杂,涉及到由于李某提出装修质量存在严重问题,需要进一步调查取证并进行鉴定。在此种情况下
宏观经济发展水平和状况是影响股票价格的重要因素,宏观经济因素包括()。
甲公司是一家知名的IT企业,主要业务为硬件生产和IT服务。2002年,该公司敏锐地发在互联网快速发展的背景下,电子商务会有很好的前景。决定进行业务全面转型,出售硬件业务,变身为电子商务整体解决方案提供商。下列选项中,属于该公司进行决策时考虑的宏观环境因素是
属于可再生能源的是()。
简述斯宾塞的教育思想。
法律是由国家制定或认可并依靠国家强制力保证实施的,反映由特定社会物质生活条件所决定的统治阶级意志,规定权利和义务,以确认、保护和发展有利于统治阶级的社会关系和社会秩序为目的的行为规范体系。马克思主义认为,法律是统治阶级意志的体现。这里的“统治阶级意志”可以
Theinterviewtookplacearoundthekitchentableandwasverycasual.
Therewasatimewhenonlygovernmentscouldcreatemoney,andasMikeRowbothamexplainsinhisexcellentbook,TheGripofDea
BigisBackA)Corporategiantswereonthedefensivefordecades.Nowtheyhavetheadvantageagain.In1996,inoneofhis
最新回复
(
0
)