首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α
admin
2015-08-17
49
问题
已知4阶方阵A=[α
1
,α
2
,α
3
,α
4
],α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
-α
3
,如果β=α
1
+α
2
+α
选项
答案
由α
1
=2α
2
一α
3
及α
2
,α
3
,α
4
线性无关知r(A)=r(α
1
,α
2
,α
3
,α
4
)=3.且对应齐次方程组AX=0有通解k[1,一2,1,0]
T
,又β=α
2
+α
2
+α
3
+α
4
,即[α
1
,α
2
,α
3
,α
4
]X=β=α
1
+α
2
+α
3
+α
4
=[α
1
,α
2
,α
3
,α
4
][*]故非齐次方程组有特解η=[1,1,1,1]
T
,故方程组的通解为k[1,一2,1,0]
T
+[1,1,1,1]
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/yQw4777K
0
考研数学一
相关试题推荐
设a>1,n为正整数,证明:
若四次方程a。x4+a1x3+a2x+a3x+a4=0有四个不同的实根,试证明4a。x3+3a1x2+2a2x+a3=0的所有根皆为实根.
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数,试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程=0.
一辆机场交通车载有25名乘客途经9个站,每位乘客都等可能在这9个站中任意一站下车(且不受其他乘客下车与否的影响),交通车只在有乘客下车时才停车,令随机变量Yi表示在第i站下车的乘客数,i=1,2,…,Xi在有乘客下车时取值为1,否则取值为0.求:交通车
设f(x,y),g(x,y)在平面有界闭区域D上连续,且g(x,y)≥0.证明:存在(ξ,η)∈D,使得
已知A是m×n矩阵,m<n.证明:AAT是对称阵,并且AAT正定的充要条件是r(A)=m.
设A为n阶实对称可逆矩阵f(χ1,χ2,…,χN)=.(1)记X=(χ1,χ2,…,χn)T,把二次型f(χ1,χ2,…,χn)写成矩阵形式;(2)二次型g(X)=XTAX是否与f(χ1,χ2,…,χn)合同?
设A=E=ααT,其中α为n维非零列向量.证明:(1)A2=A的充分必要条件是α为单位向量;(2)当α是单位向量时A为不可逆矩阵.
已知齐次线性方程组有非零解,且是正定矩阵.求xTx=1,xTAx的最大值和最小值.
随机试题
偏移尾座法车圆锥面有哪些优缺点?其适用在什么场合?
下列哪项是胆南星的功效
在游泳池水中,看池底的物体时.会产生
表皮黑素单元内角质形成细胞与黑素细胞的比例为
相对运输需求而言,社会经济活动是本源需求,运输需求是一种派生需求。()
在财政经费紧张的情况下,某县级人民政府仍然决定对城镇中心小学给予重点投入,该做法()。
最近,“竹炭食品”在网上热销,商家宣称这些食品可以帮助清除人体血液中的有毒有害物质,有些贴上竹炭标签的花生甚至能够卖到40元一斤,比普通花生的价格高出了两三倍。对此,专家表示“竹炭排毒”其实是商家宣传的噱头,无法真正帮助人体排毒。以下哪项如果为真
下列选项中,关于五四运动的意义说法不正确的是()。
依次填入下列各句横线处的词语,最恰当的一组是______。①加入WTO以后,出版业同样面临着严峻的挑战,该杂志社首先提出了“适应出版新形势构建版协新______”的口号。②这次活动承蒙贵公司慷慨解囊热情赞助取得了圆满成功,他日有托,本人定投
下列各选项中,属于法律实施的状况评价标准的有
最新回复
(
0
)