首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)连续,且∫0xf(t)dt=sin2x+∫0xtf(x-t)dt.求f(x).
设函数f(x)连续,且∫0xf(t)dt=sin2x+∫0xtf(x-t)dt.求f(x).
admin
2019-04-22
65
问题
设函数f(x)连续,且∫
0
x
f(t)dt=sin
2
x+∫
0
x
tf(x-t)dt.求f(x).
选项
答案
将 ∫
0
x
tf(x-t)dt[*]∫
0
x
(x-u)f(u)(-du)=∫
0
x
(x-u)f(u)du =x∫
0
x
f(u)du-∫
0
x
uf(u)du 代入原方程即得∫
0
x
f(t)dt=sin
2
x+x∫
0
x
f(u)du-∫
0
x
uf(u)du. ① 由f(x)连续可见以上方程中各项均可导.将方程①两端对x求导即得 f(x)=2sinxcosx+∫
0
x
f(u)du=sin2x+∫
0
x
f(u)du. ② (在①中令x=0,得0=0,不必另加条件①与②同解.) 在②式中令x=0可得f(0)=0,由②式还可知f(x)可导,于是将它两端对x求导,又得 f’(x)=2cos2x+f(x). 故求y=f(x)等价于求解初值问题[*]的特解.解之可得 y=f(x)=[*](e
x
+2sin2x-cos2x).
解析
转载请注明原文地址:https://kaotiyun.com/show/yRV4777K
0
考研数学二
相关试题推荐
设f(x)在(x0-δ,x0+δ)有n阶连续导数,且f(k)(x0)=0,k=2,3,…,n-1;f(n)(x0)≠0.当0<|h|<δ时,f(x0+h)-f(x0)=hf’(x0+θh),(0<θ<1).求证:.
已知二次型2x12+3x22+3x32+2ax2x3(a>0)可用正交变换化为y12+2y22+5y32,求a和所作正交变换.
设矩阵A的伴随矩阵且ABA一1=BA一1+3E,其中E为四阶单位矩阵,求矩阵B。
已知线性方程组(1)a,b为何值时,方程组有解;(2)方程组有解时,求出方程组的导出组的基础解系;(3)方程组有解时,求出方程组的全部解.
若4阶矩阵A与B相似,矩阵A的特征值为,则行列式|B-1-E|=_______。
设A为三阶矩阵,A的第一行元素为1,2,3,|A|的第二行元素的代数余子式分别为a+1,a-2,a-1,则a=_______.
设f(x)是奇函数,除x=0外处处连续,x=0是其第一类间断点,则∫02f(t)dt是()
设fn(χ)=χ+χ2+…+χn(n≥2).(1)证明方程fn(χ)=1有唯一的正根χn;(2)求χn.
用配方法化下列二次型为标准形:f(χ1,χ2,χ3)=χ12+2χ22-5χ32+2χ1χ2-2χ1χ3+2χ2χ3.
曲线y=的斜渐近线方程为_________。
随机试题
卫生服务研究
患者,缺失半年余,要求固定修复,决定其能否固定桥恢复的因素,除了
女,32岁,确诊溃疡性结肠炎6年。腹痛、腹泻加重伴高热、腹胀3天,2天来大量便血,腹胀明显。查体:全腹压痛,反跳痛明显,腹部听诊3分钟未闻及肠鸣音。首选的检查是
引起二氧化碳潴留的主要机制是
一端固定一端自由的细长(大柔度)压杆,长为L(图a),当杆的长度减小一半时(图b),其临界载荷Fcr比原来增加()。
关于地铁车站结构后浇缝施工要求的说法,正确的是()。
资产证券化和首次公开上市发行属于()业务。
某项目的现金净流量数据如下:NCF0=-100万元,NCF1=0,NCF2-10=30万元;假定项目的基准折现率为10%,则该项目的现值指数为()。
简述良好师生关系的作用。
激光理论的提出者是(),他被称为激光理论之父。
最新回复
(
0
)