首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B均为n阶矩阵,且AB=A+B,则下列命题中: ①若A可逆,则B可逆; ②若A+B可逆,则B可逆; ③若B可逆,则A+B可逆; ④A—E恒可逆. 正确的个数为 ( )
设A,B均为n阶矩阵,且AB=A+B,则下列命题中: ①若A可逆,则B可逆; ②若A+B可逆,则B可逆; ③若B可逆,则A+B可逆; ④A—E恒可逆. 正确的个数为 ( )
admin
2018-09-20
46
问题
设A,B均为n阶矩阵,且AB=A+B,则下列命题中:
①若A可逆,则B可逆; ②若A+B可逆,则B可逆;
③若B可逆,则A+B可逆; ④A—E恒可逆.
正确的个数为 ( )
选项
A、1
B、2
C、3
D、4
答案
D
解析
由于(A-E)B=A,可知当A可逆时,|A—E||B|≠0,故|B|≠0,因此B可逆,可知①是正确的.
当A+B可逆时,|AB|=|A||B|≠0,故|B|≠0,因此B可逆,可知②是正确的.
类似地,当B可逆时,A可逆,故|AB|=|A||B|≠0,因此AB可逆,故A+B也可逆,可知③是正确的.
最后,由AB=A+B可知(A—E)B一A=O,也即(A—E)B一(A—E)=E,进一步有(A—E)(B—E)=E,故A—E恒可逆.可知④也是正确的.
综上,4个命题都是正确的,故选(D).
转载请注明原文地址:https://kaotiyun.com/show/yRW4777K
0
考研数学三
相关试题推荐
设A是3阶实对称矩阵,A的特征值是6,-6,0,其中λ=6与λ=0的特征向量分别是(1,a,1)T及(a,a+1,1)T,求矩阵A.
设A是3阶矩阵,且各行元素之和都是5,则A必有特征向量_______.
设A为n阶可逆矩阵,λ是A的一个特征值,则伴随矩阵A*的一个特征值是
证明:当x>1时,0<lnx+
设二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3-2x2x3,(Ⅰ)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为y12+y22,求a的值.
已知A=,A*是A的伴随矩阵,求A*的特征值与特征向量.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2…+(n一1)αn一1=0,b=α1+α2+…+αn.证明方程组AX=b有无穷多个解;
设α1=(1)a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,β可唯一表示为α1,α2,α3,α4的线性组合?
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2一3α1一α3一α5,α4—2α1+α3+6α5,求方程组AX=0的通解.
(16年)设二维随机变量(X,Y)在区域D={(χ,y)|0<χ<1,χ2<y<}上服从均匀分布,令(Ⅰ)写出(X,Y)的概率密度;(Ⅱ)问U与X是否相互独立?并说明理由;(Ⅲ)求Z=U+X的分布函数F(z).
随机试题
下列哪几项属于运动系统()
腹泻伴里急后重者可见于
甲国法院在审理某涉外民事案件时,根据本国的冲突规范指定应适用乙国的法律,而乙国的冲突规范指定应适用丙国的法律,但丙国的冲突规范指定应适用乙国的法律,最后甲国法院适用乙国法律处理了案件。这个适用法律的过程称为:()
复式记账法是对发生的每一项经济业务,在相互联系的两个账户中进行等额记录的记账方法。()
某公司息税前利润为500万元,债务资金200万元(账面价值),平均债务税后利息率为7.5%,所得税税率为25%,普通股的资本成本为15%,则公司价值分析法下,公司此时股票的市场价值为()万元。
总体方差与样本方差的惟一区别在于()。
一、注意事项1.申论考试足对应考者阅读理解能力、综合分析能力、提出和解决问题能力、文字表达能力的测试。2.作答参考时限:阅读资料40分钟。作答110分钟。3.仔细阅读给定资料,按照后面提出的“作答要求”作答。二、给定资料
19世纪末、20世纪初资产阶级革命团体纷纷建立,主要有
Nextyear,ifallgoesasplanned,thelargestmakerofpersonalcomputersinAsiawillbecomethethirdlargestintheworld.
Somepessimisticexpertsfeelthattheautomobileisboundtofallintodisuse.Theyseeadayinthenot-too-distantfuturewhe
最新回复
(
0
)