首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A=的一个特征值λ1=2对应的特征向量为α1=(1,2,2)T. 求可逆矩阵P,使得P-1AP=A;
已知3阶矩阵A=的一个特征值λ1=2对应的特征向量为α1=(1,2,2)T. 求可逆矩阵P,使得P-1AP=A;
admin
2020-10-21
90
问题
已知3阶矩阵A=
的一个特征值λ
1
=2对应的特征向量为α
1
=(1,2,2)
T
.
求可逆矩阵P,使得P
-1
AP=A;
选项
答案
A=[*],其特征多项式[*] 由|λE—A|=0,得A的特征值λ
1
=λ
2
=2,λ
3
=一1. 当λ
1
=λ
2
=2时,由(2E—A)x=0,解得A的特征值λ
1
=λ
2
=2对应的线性无关特征向量为β
1
=(1,4,0)
T
,β
2
=(0,一1,1)
T
. 当λ
3
=一1时,由(一1E—A)x=0,解得A的特征值λ
3
=一1对应的线性无关特征向量为β
3
=(1,0,1)
T
. 取P=(β
1
,β
2
,β
3
)=[*],则P可逆,且P
-1
AP=A=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/yT84777K
0
考研数学二
相关试题推荐
设a=,则当x→0时,两个无穷小的关系是().
f(x)在[-1,1]上连续,则x=0是函数g(x)=的().
设A是三阶实对称矩阵,存在可逆矩阵P=,使得P-1AP=且A*a=μa.求|A*+3E|.
设抛物线y=x2与它的两条相互垂直的切线所围成的平面图形的面积为S,其中一条切线与抛物线相切于点A(a,a2)(a>0).当a取何值时,面积S(a)最小?
设方程组,有无穷多解,矩阵A的特征值为λ1=1,λ2=-1,λ3=0,其对应的特征向量为a1=,a2=,a3=.求A.
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+py’+gy=f(x)的三个特解.(I)求这个方程和它的通解;(Ⅱ)设y=y(x)是该方程满足y(0
设二次型f(χ1,χ2,χ3)=5χ12+aχ22+3χ32-2χ1χ2+6χ1χ3-6χ2χ3的矩阵合同于.(Ⅰ)求常数a的值;(Ⅱ)用正交变换法化二次型f(χ1,χ2,χ3)为标准形.
[2012年]已知函数f(x)=,记a=f(x).若x→0时,f(x)一a与xk是同阶无穷小,求常数k的值.
设A是m×n矩阵,r(A)=n,则下列结论不正确的是().
下列函数在(0,0)处不连续的是
随机试题
尿毒症患者发生口臭是由于
男,27岁,入院前1天突然出现全身抽搐1次,时间约2分钟,继之患者出现昏迷,血压180/108mmHg,心率62次/min,心前区可闻及心包摩擦音,Balbinski征阴性,血红蛋白52g/L,血小板60×109/L,白细胞3.2×109/L,尿蛋白(++
虚证的病机概念是
A.麻黄碱B.维拉帕米C.氟尿嘧啶D.奥美拉唑E.去甲肾上腺素
电梯的安装、改造、维修,必须由电梯制造单位或者其通过合同委托、同意的依照本条例取得许可的单位进行,()对电梯质量以及安全运行涉及的质量问题负责。
_____人格特征的人,往往追求刺激、新奇,好冒险。【】
给定资料1.近年来,随着国家和地方政府对扶贫攻坚的政策扶持及资金投入力度越来越大,被曝光的涉及扶贫领域的腐败案例不断涌现,扶贫领域俨然已经成为腐败的“重灾区”。扶贫资金被人“惦记”,和其监管难有很大关系。从横向上看,扶贫资金来源过多,多头管理,
设f(x)可导,证明:f(x)的两个零点之间一定有f(x)+f’(x)的零点.
Forthepastfewmonths,artificialintelligence(AI)hasbeenamuchtalkedabouttopicintheworldsofbothpopcultureandsci
この着物はいかにも日本()柄ですね。
最新回复
(
0
)