首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组为 (1)讨论a1,a2,a3,a4取值对解的情况的影响. (2)设a1=a3=k,a2=a4=-k(k≠0),并且(-1,1,1)T和(1,1,-1)T都是解,求此方程组的通解.
设线性方程组为 (1)讨论a1,a2,a3,a4取值对解的情况的影响. (2)设a1=a3=k,a2=a4=-k(k≠0),并且(-1,1,1)T和(1,1,-1)T都是解,求此方程组的通解.
admin
2018-06-27
101
问题
设线性方程组为
(1)讨论a
1
,a
2
,a
3
,a
4
取值对解的情况的影响.
(2)设a
1
=a
3
=k,a
2
=a
4
=-k(k≠0),并且(-1,1,1)
T
和(1,1,-1)
T
都是解,求此方程组的通解.
选项
答案
(1)增广矩阵的行列式是一个范德蒙行列式,其值等于 [*] =(a
2
-a
1
)(a
3
-a
1
)(a
4
-a
1
)(a
3
-a
2
)(a
4
-a
2
)(a
4
-a
3
). 于是,当a
1
,a
2
,a
3
,a
4
两两不同时,增广矩阵的行列式不为0,秩为4,而系数矩阵的秩为3.因此,方程组无解. 如果a
1
,a
2
,a
3
,a
4
不是两两不同,则相同参数对应一样的方程.于是只要看有几个不同,就只留下几个方程. ①如果有3个不同,不妨设a
1
,a
2
,a
3
两两不同,a
4
等于其中之一,则可去掉第4个方程,得原方程组的同解方程组 [*] 它的系数矩阵是范德蒙行列式,值等于(a
1
-a
2
)(a
3
-a
1
)(a
3
-a
2
)≠0,因此方程组有唯一解. ②如果不同的少于3个,则只用留下2个或1个方程,此时方程组无穷多解. (2)此时第3,4两个方程分别就是第1,2方程,可抛弃,得 [*] (-1,1,1)
T
和(1,1,-1)
T
都是解,它们的差(-2,0,2)
T
是导出组的一个非零解.本题未知数个数为3,而系数矩阵 [*] 的秩为2(注意k≠0).于是(-2,0,2)
T
构成导出组的基础解系,通解为: (-1,1,1)
T
+c(-2,0,2)
T
,c可取任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/yak4777K
0
考研数学二
相关试题推荐
设函数f(x)在[a,+∞)内二阶可导且f’’(x)a,f’(b)>0,f’(b)
设函数f(x)在x=1的某邻域内连续,且有若又设f’’(1)存存,求f’’(1).
设f(x)在(一∞,+∞)内一阶可导,求证:若f(x)在(一∞,+∞)是凹函数,则或
设f(x)在[a,b]上有二.阶导数,且f’(x)>0.证明至少存在一点ξ∈(a,b),使
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求向量组α1,α2,α3,α4的一个极大线性无关组,并把其他向量用该极大线性无关组
已知三元二次型xTAx的平方项系数均为Ω设α=(1,2,一1)T且满足Aα=2α.求该二次型表达式;
已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2—2α3,Aα2=一α2,Aα3=8α1+6α2—5α2.求A的特征值和特征向量;
设b为常数.设L与l从x=1延伸到x→+∞之间的图形的面积八为有限值,求b及A的值.
随机试题
甲为110警察,某日接到群众乙的求助电话,乙告诉甲自己的朋友丙可能在家出事了,整整一天打丙的电话都没人接,当乙到丙家门口时还隐隐约约闻到了里面散发出的煤气味。甲就追问乙是不是确定丙在家中,是不是确定屋里有煤气味,乙说不确定,甲就拒绝了乙的出警请求。五个小时
某分部工程双代号网络计划图如下图所示,图中错误为( )。
相对于沥青混凝土路面,水泥混凝土路面的优点有()。
SDH传输网标准化的信息结构等级称为同步传送模块STM-N。N值可取()。
“喜欢自然界与生活中美的事物”,这一目标所属的艺术子领域是()
软件工程学一般包括软件开发技术和软件工程制造的方面内容.软件工程经济学是软件工程管理的技术内容之一,它专门研究()。
某市政府所属A行政机关作出行政处罚决定后被撤销,其职能由市政府所属B行政机关继续行使。受到行政处罚的公民不服,准备提起行政复议。此时他应以()为行政复议被申请人。
用层次分析法分析下列句子,有多义的要分别分析。(北京语言大学2015)照片放大了一点。
MycarwouldnotstartsoIcamehere______.
UniversalHealthCoverageVocabularyandExpressionsuniversalhealthcoveragepeople-centredcareintegratedservicedel
最新回复
(
0
)