首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB的对角线元素就是A和B对应对角线元素的乘积. (2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a2k,…,annk;f(A)的对角线元素为f(
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB的对角线元素就是A和B对应对角线元素的乘积. (2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a2k,…,annk;f(A)的对角线元素为f(
admin
2017-10-21
108
问题
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB的对角线元素就是A和B对应对角线元素的乘积.
(2)证明上三角矩阵A的方幂A
k
与多项式f(A)也都是上三角矩阵;并且A
k
的对角线元素为a
11
k
,a
2
k
,…,a
nn
k
;f(A)的对角线元素为f(a
11
),f(a
22
),…,f(a
nn
).
(a
11
,a
22
,…,a
nn
是A的对角线元素.)
选项
答案
设A和B都是n阶上三角矩阵,C=AB,要说明C的对角线下的元素都为0,即i>j时,c
ij
=0.c
ij
=A的第i个行向量和B的第j个列向量对应分量乘积之和.由于A和B都是n阶上三角矩阵,A的第i个行向量的前面i一1个分量都是0,B的第j个列向量的后面n一j个分量都是0,而i一1+n一j=n+(i一j一1)≥n,因此c
ij
=0. c
ii
=a
i1
b
i1
+…+a
ii-1
b
i-1i
+a
ii
b
ii
+a
ii+1
b
i+1i
+…+a
in
b
ni
=a
ii
b
ii
(a
i1
=…=a
ii-1
=0,b
i+1i
=…=b
ni
=0).
解析
转载请注明原文地址:https://kaotiyun.com/show/ydH4777K
0
考研数学三
相关试题推荐
证明:
设为A*的特征向量,求A*的特征值λ及a,b,c和A对应的特征值μ.
设为发散的正项级数,令Sn=a1+a2+…+an(a=1,2,…).证明:收敛.
判断级数的敛散性.
设A是m×n矩阵,则下列命题正确的是().
对二元函数z=f(x,y),下列结论正确的是().
已知三元二次型XTAX经正交变换化为2y12一y22一y32,又知矩阵B满足矩阵方程其中α=[1,1,一1]T,A*为A的伴随矩阵,求此二次型XTBX的表达式.
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3.若A3β=Aβ,求秩r(A—E)及行列式|A+2E|.
设A是n阶正定阵,E是n阶单位阵,证明:A+E的行列式大于1.
设A,B为三阶相似矩阵,且|2E+A|=0,λ1=1,λ2=一1为B的两个特征值,则行列式|A+2AB|=____________。
随机试题
公有制的实现形式可以而且应当多样化。()
Junglecountryisnotfriendlytoman,butitispossibletosurvivethere.Youmusthavetheright【21】andyoumustknowafewi
主要含汞成分的中药有哪些?各药的功效及使用注意是什么?
人参有大补元气、补脾益肺、生津止渴、安神益智之效,为治疗元气将脱证之圣品,其下列说法哪一种不正确
下列属于糖酵解途径关键酶的是
女婴,3个月。生长发育良好,体重为5kg,因母亲患慢性疾病,需停用母乳而改牛奶喂养。该婴儿每天需补充多少8%糖牛奶及在8%糖牛奶(m1)中另补多少水分(m1)()
某投资项目寿命为12年,当基准折现率取12%时净现值等于零,则该投资项目的动态投资回收期()。
因单位减员增效,距离法定退休年龄尚有3年零4个月的王某,于2006年6月办理了内部退养手续,当月领取工资1800元和一次性补偿收入60000元。王某6月份应缴纳个人所得税()元。
在下列情形中,()为承诺。
【2014年威海市真题】某美国学者提出一种新的教学组织形式。试图把大班、小班和个人三种教学形式结合起来。实行大班上课、小班研究和个别教学,其教学时间分配为大班上课占40%,小班研究占20%,个别教学占40%。这种教学组织形式是()。
最新回复
(
0
)