首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为连续正值函数,x∈[0,+∞),若平面区域Rt={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0)的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与1/2之和,求f(x).
设f(x)为连续正值函数,x∈[0,+∞),若平面区域Rt={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0)的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与1/2之和,求f(x).
admin
2018-06-14
53
问题
设f(x)为连续正值函数,x∈[0,+∞),若平面区域R
t
={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0)的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与1/2之和,求f(x).
选项
答案
(Ⅰ)列方程.按平面图形的形心公式,形心的纵坐标为 [*] 而相应的曲边梯形的面积∫
0
t
f(x)dx.见图6.2.按题意 [*] 即∫
0
t
f
2
(x)dx=2[∫
0
t
f(x)dx]
2
+∫
0
t
f(x)dx (x≥0). ① (Ⅱ)转化.将方程①两边求导,则 方程①[*]f
2
(t)=4f(t)∫
0
t
f(x)dx+f(t) [*]f(t)=4∫
0
t
f(x)dx+1 ② (①中令x=0,等式自然成立,不必另加条件). f(x)实质上是可导的,再将方程②两边求导,并在②中令t=0得 [*] (Ⅲ)求解等价的微分方程的初值问题③.这是一阶线性齐次方程的初值问题,两边乘μ(t)=e
-∫4dt
[*]e
-4t
得[f(t)e
-4t
]’=0,并由初始条件得f(t)=e
4t
,即f(x)=e
4x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/zHg4777K
0
考研数学一
相关试题推荐
设随机变量X的概率密度为f(χ)=记事件A={X≤1},对X进行4次独立观测,到第四次事件A刚好出现两次的概率就为q,则q=_______.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
假设你是参加某卫视“相亲节目”的男嘉宾,现有n位女嘉宾在你面前自左到右排在一条直线上,每两位相邻的女嘉宾的距离为a(米).假设每位女嘉宾举手时你必须和她去握手,每位女嘉宾举手的概率均为,且相互独立,若Z表示你和一位女嘉宾握手后到另一位举手的女嘉宾处所走的路
设一阶非齐次线性微分方程y’+p(x)y=Q(x)有两个线性无关的解y1,y2,若αy1+βy2也是该方程的解,则应有α+β=________
设(1)求证:若b>1,则发散;(2)当b=1时,试举出可能收敛也可能发散的例子.
设有方程试证:|gradu|=2A.gradu,其中A=(x,y,z).
设事件A出现的概率为p=0.5,试利用切比雪夫不等式,估计在1000次独立重复试验中事件A出现的次数在450到550次之间的概率a.
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点试求曲线L的方程;
设L为曲线x2+y2=R2(常数R>0)一周,n为L的外法线方向向量,u(x,y)具有二阶连续偏导数且
求方程y(4)一y"=0的一个特解,使其在x→0时与x3为等价无穷小.
随机试题
下列选项中,属于用人单位履行劳动合同义务的是()。
设A为3阶矩阵,将A-1的第2行2倍加到第1行、将第1列的4倍加到第3列、对调第1列与第3列得E,则A*=().
线性可变电阻型节气门位置传感器是一种线性电位计。()
进行尿液干化学检测时,受维生素C影响的指标是
建设项目经济评价有一整套指标体系,敏感性分析可选定其中一个或几个主要指标进行分析,最基本的分析指标是:
土基开挖的岸坡应大致平顺,不应成台阶状、反坡或突然变坡,岸坡上缓下陡时,变坡角应小于20。,岸坡不宜陡于()。
材料在水中吸收水分的性质称为()。
孙某曾应聘在甲公司工作,试用期满后从事技术工作,2年后跳槽至乙企业成为该企业的业务骨干。甲公司为实施新的公司战略,拟聘请孙某担任公司高管。经协商,双方签订了劳动合同,约定:(1)劳动合同期限为2年,试用期为3个月;(2)合同期满或因其他原因离职后,孙某在3
鍵を閉めないで出かけて、泥棒に________んだって。
A、FrancesoughttotaldominationofEurope.B、BritishindependenceobstructedthegoalofFrance.C、Britainmadeeffortstothwa
最新回复
(
0
)