首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为连续正值函数,x∈[0,+∞),若平面区域Rt={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0)的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与1/2之和,求f(x).
设f(x)为连续正值函数,x∈[0,+∞),若平面区域Rt={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0)的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与1/2之和,求f(x).
admin
2018-06-14
76
问题
设f(x)为连续正值函数,x∈[0,+∞),若平面区域R
t
={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0)的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与1/2之和,求f(x).
选项
答案
(Ⅰ)列方程.按平面图形的形心公式,形心的纵坐标为 [*] 而相应的曲边梯形的面积∫
0
t
f(x)dx.见图6.2.按题意 [*] 即∫
0
t
f
2
(x)dx=2[∫
0
t
f(x)dx]
2
+∫
0
t
f(x)dx (x≥0). ① (Ⅱ)转化.将方程①两边求导,则 方程①[*]f
2
(t)=4f(t)∫
0
t
f(x)dx+f(t) [*]f(t)=4∫
0
t
f(x)dx+1 ② (①中令x=0,等式自然成立,不必另加条件). f(x)实质上是可导的,再将方程②两边求导,并在②中令t=0得 [*] (Ⅲ)求解等价的微分方程的初值问题③.这是一阶线性齐次方程的初值问题,两边乘μ(t)=e
-∫4dt
[*]e
-4t
得[f(t)e
-4t
]’=0,并由初始条件得f(t)=e
4t
,即f(x)=e
4x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/zHg4777K
0
考研数学一
相关试题推荐
下列三个命题①设的收敛域为(-R,R),则,的收敛域为(-R,R);②设幂级数在χ=-1条件收敛,则它的收敛半径R=1。③设幂级数的收敛半径分别为R1,R2,则(an+bn)χn的收敛半径R=min(R1,R2)中正确的个数是
函数u=χyz2在条件χ2+y2+z2=4(χ>0,Y>0,χ>0)下的最大值是_______.
设x∈(0,1),证明下面不等式:(1+x)in2(1+x)<x2;
设常数0<a<1,求
设一阶非齐次线性微分方程y’+p(x)y=Q(x)有两个线性无关的解y1,y2,若αy1+βy2也是该方程的解,则应有α+β=________
设(1)求证:若b>1,则发散;(2)当b=1时,试举出可能收敛也可能发散的例子.
设总体服从U[0,θ],X1,X2,….XN为总体的样本.证明:为θ的一致估计.
独立地重复进行某项试验,直到成功为止,每次试验成功的概率为p.假设前5次试验每次的试验费用为10元,从第6次起每次的试验费用为5元.试求这项试验的总费用的期望值a.
设f(x;t)=((x-)(t-1)>0,x≠t),函数f(x)由下列表达式确定,求出f(x)的连续区间和间断点,并研究f(x)在间断点处的左右极限.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
随机试题
A、Thebirdwasdead.B、Thebirdwasalive.C、It’shardtoanswerthequestion.D、Hefoundoutthechildren’strick.D
病理性中性粒细胞增多常见于以下哪些疾病
甲、乙双方因工程款纠纷引发诉讼,案件经过两级法院审理终结。由于对二审判决结果不服,甲欲向上一级人民法院申请再审。甲提出的下列事实和理由不能得到法院准许的有()。
根据《建设工程质量管理条例》的规定,设计单位应当参与建设工程()分析,并提出相应的技术处理方案。
注册会计师可以利用检查文件资料的程序来进行控制测试和实质性程序,但在不同种类的测试中,检查的对象是不同的。( )分析程序具有很强的预期性,它不仅可以帮助注册会计师发现财务报表中的已发生的异常变化,或者预期发生而未发生的变化,还可以帮助注册会计师发现财
对于一般中暑旅游者,可将其置于阴凉通风处、能时让其饮用含盐饮料、解开衣领,放松裤带。()
随着商品流通,贸易往来、人际交流的越来越______,远古时代那种依靠步行的交通方式以及手提、肩扛、头顶的运输方式已很难适应社会发展的需要,于是交通运输设施的兴建与运输工具的制造便_______。
1/2,1/3,3/10,2/7,5/18,()
我国现行宪法规定,全国人大常委会的组成人员中,应当有适当名额的()。
A、Hecan’texplaintheinstructionsclearly.B、Hespeakstoofast.C、Hedoesn’tunderstandtheinstructionsclearly.D、Heisde
最新回复
(
0
)