首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为连续正值函数,x∈[0,+∞),若平面区域Rt={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0)的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与1/2之和,求f(x).
设f(x)为连续正值函数,x∈[0,+∞),若平面区域Rt={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0)的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与1/2之和,求f(x).
admin
2018-06-14
49
问题
设f(x)为连续正值函数,x∈[0,+∞),若平面区域R
t
={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0)的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与1/2之和,求f(x).
选项
答案
(Ⅰ)列方程.按平面图形的形心公式,形心的纵坐标为 [*] 而相应的曲边梯形的面积∫
0
t
f(x)dx.见图6.2.按题意 [*] 即∫
0
t
f
2
(x)dx=2[∫
0
t
f(x)dx]
2
+∫
0
t
f(x)dx (x≥0). ① (Ⅱ)转化.将方程①两边求导,则 方程①[*]f
2
(t)=4f(t)∫
0
t
f(x)dx+f(t) [*]f(t)=4∫
0
t
f(x)dx+1 ② (①中令x=0,等式自然成立,不必另加条件). f(x)实质上是可导的,再将方程②两边求导,并在②中令t=0得 [*] (Ⅲ)求解等价的微分方程的初值问题③.这是一阶线性齐次方程的初值问题,两边乘μ(t)=e
-∫4dt
[*]e
-4t
得[f(t)e
-4t
]’=0,并由初始条件得f(t)=e
4t
,即f(x)=e
4x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/zHg4777K
0
考研数学一
相关试题推荐
在区间(-1,1)上任意投一质点,以X表示该质点的坐标.设该质点落在(-1,1)中任意小区间内的概率与这个小区间的长度成正比,则
当χ→0时,下列无穷小量中阶数最高的是
已知向量组α1,α2,α3,α4线性无关,则向量组2α1+α3+α4,α2-α4,α3+α4,α2+α3,2α1+α2+α3的秩是()
A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,试证明:aij=AATA=E,且|A|=1;
求级数的和.
极限()
变换下列二次积分的积分次序:
交换积分次序并计算∫0adx∫0xdy(a>0).
计算下列各题:设y=求dy/dx;
设z=z(x,y)是由9x2—54xy+90y2—6yz一z2+18=0确定的函数,求证z=z(x,y)一阶偏导数并求驻点;
随机试题
患者,男,35岁。间断喘息发作5年,无明显季节性,发作以夜间为著。发作时口服β受体激动剂症状可明显缓解。近日喘息再次发作,行肺功能检查示,FEV占预计值的84%,FEV1/FVC82%。为明确诊断,应首先进行的检查是
在Word中,按______键可实现“插入”方式与“改写”方式的相互转换。
简述新时代党的建设的方针。
机体各种功能活动所消耗的能量中,最终不能转化为体热的是
关于酒剂与酊剂的叙述,正确的是()。
私人储蓄的两个来源是()。
也许监管部门已经习惯了让媒体跑在前面,自己在后__________,在舆论压力下被动执法,这样的监管从根本上是对违法企业的__________,企业自然有恃无恐。填入划横线部分最恰当的一项是:
下列关于企业合并与分立的说法不正确的是()
下列算法中,不属于进程调度算法的是
Somedoctorsaretakinganunusualnewapproachtocommunicatebetterwithpatients—theyareletting【C1】______readthenotestha
最新回复
(
0
)