首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设Am×n,r(A)=m,Bn×(n-m),r(B)=n-m,且满足关系式AB=O.证明:若η是齐次线性方程组Ax=0的解,则必存在唯一的ξ,使得Bξ=η.
设Am×n,r(A)=m,Bn×(n-m),r(B)=n-m,且满足关系式AB=O.证明:若η是齐次线性方程组Ax=0的解,则必存在唯一的ξ,使得Bξ=η.
admin
2021-07-27
66
问题
设A
m×n
,r(A)=m,B
n×(n-m)
,r(B)=n-m,且满足关系式AB=O.证明:若η是齐次线性方程组Ax=0的解,则必存在唯一的ξ,使得Bξ=η.
选项
答案
将B按列分块,设B=[β
1
,β
2
,…,β
n-m
],因已知AB=O,故知B的每一列均是Ax=0的解,由r(A)=m,r(B)=n-m知,β
1
,β
2
,…,β
n-m
是Ax=0的基础解系.若η是Ax=0的解向量,则η可由基础解系β
1
,β
2
,…,β
n-m
线性表出,且表出法唯一,即即存在唯一的ξ,使Bξ=η.
解析
转载请注明原文地址:https://kaotiyun.com/show/zHy4777K
0
考研数学二
相关试题推荐
设α1=(1,2,3,1)T,α2=(3,4,7,一1)T,α3=(2,6,a,b)T,α4=(0,1,3,a)T,那么a=8是α1,α2,α3,α4线性相关的()
设向量组α1,α2,α3为方程组AX=0的一个基础解系,下列向量组中也是方程组AX=0的基础解系的是().
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为()
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t).(1)问当t为何值时,向量组α1,α2,α3线性无关?(2)问当t为何值时,向量组α1,α2,α3线性相关?(3)当α1,α2,α3线性相关时,将α3表示为α1和α2的线
向量组α1,α2,…,αs线性无关的充要条件是().
设A,B为满足AB=O的任意两个非零矩阵,则必有()
设A为三阶矩阵,且Aαi=iαi(i=1,2,3),其中α1=(1,2,3)T,α2=(0,1,2)T,α3=(0,0,1)T,求A。
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
设A=(aij)为3阶非零实矩阵,且已知Aij=aij(其中Aij为aij的代数余子式),i,j=1,2,3.证明:A可逆,并求|A|与A-1.
若向量组α,β,γ线性无关,α,β,δ线性相关,则
随机试题
现在市场上流行一种“笔”,用户通过在书写板上使用“笔”书写或绘画,计算机获得相应的信息。它是一种__________。
标准差与标准误的主要区别在于
计算机辅助设计(CAD)技术与地理信息系统(GIS)技术相比较;其重要的差异在于CAD不适合进行下列()工作。
关于完全垄断企业的需求曲线和收益曲线的说法,正确的是()。
物业管理人员的资金根据企业经营管理的经济效益,从()中提取。
在某工地上,市委宣传部的专家正在为外来务工人员讲述职业道德的内容,一名建筑工人高声说。市里只知道让他们讲奉献、守道德、做模范,却不为他们解决薪资拖欠问题,这种做法是不公平的,获得了在场建筑工人的拥护和支持。有的还向讲台上扔东西,现场一片混乱。假如你是本次活
颁布《盗贼重法》的朝代是()。
社会主义核心价值体系的基本内容包括()
Anybodywhodoesn’tknowmuchaboutnanotechnologyshould【B1】________geckos.Thesearethelizardsthatareprobablytheworl
Asforadviceforlawstudentsconsideringstartingtheirownpracticesshortlyaftergraduation,Billhasafewwordsof______
最新回复
(
0
)