首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明:对任意的a>0,b>0,存在ξ,η∈(0,1),使得a/f’(ξ)+b/f’(η)=a+b.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明:对任意的a>0,b>0,存在ξ,η∈(0,1),使得a/f’(ξ)+b/f’(η)=a+b.
admin
2022-10-09
66
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明:对任意的a>0,b>0,存在ξ,η∈(0,1),使得a/f’(ξ)+b/f’(η)=a+b.
选项
答案
[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/zKR4777K
0
考研数学三
相关试题推荐
设3元的实二次型f=xTAx的秩为1,且A的各行元素之和为3.求一个正交变换x=Py将二次型f=xTAx化成标准;
设有3阶实对称矩阵A满足A3-6A2+11A-6E=0,且|A|=6.判断二次型f=xT(A+E)x的正定性.
设二次型f(x1,x2,x3)=xTAx=ax12+2x22-2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,-2,3)T+(1,2,-1)T,k为任意常数.试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设f(x)有一个原函数则
设有Am×n,Bn×m,已知En-AB可逆,证明En-BA可逆,且(En-BA)-1=En+B(En-AB)-1A.
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设F(x)是f(x)的一个原函数,且当x>0时,满足f(x)F(x)=,F(x)<0,F(0)=一1.求f(x)(x>0).
设A,B为n阶方阵,P,Q为n阶可逆矩阵,下列命题不正确的是()
随机试题
淤血可以引起
消渴日久,可见哪些合并症
下列脏腑中与厌食最为相关的是
下列对税务部门统一印制的增值税专用发票的描述中,正确的是()。
传统折中理论认为,如果公司采取适度数量的债务筹资,影响到普通股股东可分配盈利的债务利息和股权成本会与因债务筹资而增加的风险补偿得到同步增加。()
被明代大旅行家徐霞客称为“天下巨观”的是()。
设f(x)为[—a,a]上的连续偶函数,且f(x)>0,令F(x)=∫—aa|x—t|f(t)dt。当x取何值时,F(x)取最小值。
下列不属于数据库应用系统物理设计阶段活动的是()。
给定程序中,函数fun的功能是将不带头结点的单向链表逆置。即若原链表中从头至尾结点数据域依次为:2、4、6、8、10,逆置后,从头至尾结点数据域依次为:10、8、6、4、2。请在程序的下划线处填入正确的内容并把下划线删除,使程序得出正确的结果。注意:源
TheeconomycontinuedtoexhibitsignsofdeclineinSeptember.
最新回复
(
0
)