首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是( ).
设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是( ).
admin
2020-02-28
47
问题
设向量组a
1
,a
2
,a
3
线性无关,则下列向量组中线性无关的是( ).
选项
A、a
1
+a
2
,a
2
+a
3
,a
3
-a
1
B、a
1
+a
2
,a
2
+a
3
,a
1
+2a
2
+a
3
C、a
1
+2a
2
,2a
2
+3a
3
,3a
3
+a
1
D、a
1
+a
2
+a
3
,2a
1
-3a
2
+2a
3
,3a
1
+5a
2
+3a
3
答案
C
解析
由题设,观察四个选项:
关于(A),由于(a
1
+a
2
)-(a
2
+a
3
)+(a
3
-a
1
)=0,
则a
1
+a
2
,a
2
+a
3
,a
3
-a
1
线性相关.
关于(B),由于(a
1
+a
2
)+(a
2
+a
3
)-(a
1
+2a
2
+a
3
)=0,
则a
1
+a
2
,a
2
+a
3
,a
1
+2a
2
+a
3
也线性相关.
关于(C),由定义,设有一组数k
1
,k
2
,
3
,
使得k
1
(a
1
+2a
2
)+k
2
(2a
2
+3a
3
)+k
3
(3a
3
+a
1
)=0
即(k
1
+k
3
)a
1
+(2k
1
+2k
2
)a
2
+(3k
2
+3k
3
)a
3
=0,
由已知a
1
,a
2
,a
3
线性无关,则
该方程组的系数矩阵的行列式为
从而k
1
=k
2
=k
3
=0,由此知(C)中向量组线性无关.
而由同样的方法,建立关于(D)中向量组相应的方程组,可计算出系数矩阵的行列式为0,则(D)中向量组线性相关.综上选(C).
转载请注明原文地址:https://kaotiyun.com/show/zPA4777K
0
考研数学二
相关试题推荐
已知函数f(x)连续,且=1,则f(0)=_________。
设z(x,y)=x3+y3-3xy(Ⅰ)-∞<x<+∞,-∞<y<+∞,求z(x,y)的驻点与极值点.(Ⅱ)D={(x,y)|0≤x≤2,-2≤y≤2},求证:D内的唯一极值点不是z(x,y)在D上的最值点.
求极限
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=O,其中求正交变换X=QY将二次型化为标准形;
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且=0,又f(2)=,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0.
设A~B,求可逆矩阵P,使得p-1AP=B.
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导.试证:在(a,b)内至少有一点ξ,使等式=f(ξ)一ξf’(ξ)成立。
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.(1)证明:r=n;(2)设ξ1,ξ2,…,ξr,与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
已知线性方程组方程组有解时,求出方程组的导出组的基础解系;
设半径为R的球面S的球心在定球面x2+y2+z2=a2(a>0)上,问R取何值时,球面S在定球面内的面积最大?
随机试题
火灾报警信息现场核实包括()等步骤。
对军团菌肺炎,以下说法正确的是
病例对照研究中,下列哪项选择对照的方法是正确的
甲涉嫌盗窃罪被逮捕。在侦查阶段,甲父向检察院申请进行羁押必要性审查。关于羁押必要性审查的程序,下列哪一选项是正确的?(2017年卷二27题)
房屋商品租金由地租、折旧费、维修费、利润()等构成。
各单位发生的各项经济业务事项应当统一进行会计核算,不得违反规定私设会计账簿进行登记、核算。()
()是举世公认的中国古典小说的巅峰之作。
下列实验操作和现象及所得出的结论均表述正确的是()。
按照加涅学习结果分类的观点,()是指调节和控制自己的注意、学习、记忆、思维和问题解决过程的内部组织起来的能力。
反诉是指在已经提起的诉讼中,被告针对与原诉有联系的行为,提起独立诉讼请求的行为。根据以上定义,下列行为属于反诉的是()。
最新回复
(
0
)