首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1,α2,α3,α4线性无关,则下列向量组中线性无关的是( ).
已知向量组α1,α2,α3,α4线性无关,则下列向量组中线性无关的是( ).
admin
2019-06-04
43
问题
已知向量组α
1
,α
2
,α
3
,α
4
线性无关,则下列向量组中线性无关的是( ).
选项
A、α
1
+α
2
,α
2
一α
3
,α
3
一α
4
,α
4
+α
1
B、α
1
+α
2
,α
1
—2α
3
,α
1
+α
2
一α
3
,5α
2
+α
3
C、α
1
+α
2
+α
3
,α
1
一α
2
+α
3
,α
1
+3α
2
+9α
3
D、α
1
+α
3
,α
2
+2α
3
+α
4
,α
1
+2α
3
+α
4
,α
2
+3α
3
+2α
4
答案
C
解析
因为
(α
1
+α
2
)一(α
2
一α
3
)一(α
3
一α
4
)一(α
4
+α
1
)=0,
所以向量组(A)线性相关.
若令
β
1
=α
1
+α
2
,β
2
=α
1
—2α
3
,β
3
=α
1
+α
2
—α
3
,β
i
=5α
2
+α
3
.
则β
1
,β
2
,β
3
,β
4
可由α
1
,α
2
,α
3
线性表示,即多数向量可由少数向量线性表示,因此β
1
,β
2
,β
3
,β
4
线性相关,即向量组(B)线性相关.
关于(C),由α
1
,α
2
,α
3
,α
4
线性无关知,α
1
,α
2
,α
3
线性无关.若令
β
1
=α
1
+α
2
+α
3
, β
2
=α
1
-α
2
+α
3
, β
3
=α
1
+3α
2
+9α
3
,
则 [β
1
,β
2
,β
3
]=[α
1
,α
2
,α
3
]
因为
是范德蒙行列式,不为0,所以
r(β
1
,β
2
,β
3
)=r(α
1
,α
2
,α
3
)=3,
即向量组(C)线性无关,故仅(C)入选.因
[α
1
+α
3
,α
2
+2α
3
+α
4
,α
1
+2α
3
+α
4
,α
2
+3α
3
+2α
4
]
=[α
1
,α
2
,α
3
,α
4
]
而右边行列式等于0,故(D)中向量组线性相关.
转载请注明原文地址:https://kaotiyun.com/show/zQc4777K
0
考研数学一
相关试题推荐
设X1,X2,…,Xn(n>2)为来自总体N(0,1)的简单随机样本,X为样本均值,记Yi=Xi-,i=1,2,…,n.求:(Ⅰ)Yi的方差DYi,i=1,2,…,n;(Ⅱ)Y1与Yn的协方差Coy(Y1,Y2).
从正态总体N(3.4,62)中抽取容量为n的样本,如果要求其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问样本容量n至少应取多大?[附表]:
设随机变量X的概率密度函数为fx(χ)=,求随机变量Y=1-的概率密度函数fY(y).
设随机变量X,Y相互独立,其概率密度函数分别为求随机变量Z=2X+Y的概率密度函数.
设口为实n维非零列向量,αT表示α的转置.(1)证明:A—E一为对称的正交矩阵;(2)若α=(1,2,一2)T,试求出矩阵A;(3)若β为n维列向量,试证明:Aβ=β—(bc)α,其中,b、c为实常数.
设向量组α1,α2,α3为R。的一个基.β1=2α1+2kα3,β2=2α2,β3=α1+(k+1)α3.当k为何值时,存在非零向量ξ在基α1,α2,α3与β1,β2,β3下的坐标相同,并求所有的ξ.
设向量组α1,α2,α3为R。的一个基.β1=2α1+2kα3,β2=2α2,β3=α1+(k+1)α3.证明向量β1,β2,β3为R3的一个基;
若向量组α,β,γ线性无关;α,β,δ线性相关,则
随机试题
拟新建一栋库房,最高储备量为1200t,单位面积储存定额为3t/m2,仓库有效面积利用系数为0.5,求新建仓库的面积。
产生国务院的是每届全国人民代表大会()
登革热主要的传播媒介是
属于肿瘤特异性抗原的是
体质量和温度不变,绝对压强变为原来的2倍,则密度变为原来的()倍。
关于我国储蓄国债(电子式)的特点,下列说法错误的有( )。
定金与预收款的区别是()。
在职称评审过程中,各级评审组织几乎无法看到申报人的艺术实践能力,只能看到表格栏目里的论文和项目。在唯论文是重的标准下,音乐理论的教师还能体现一些真才实学,而表演艺术的教师则只能扬短避长、_______。填入画横线部分最恰当的一项是:
下列关于运算符函数的描述中,错误的是()。
Whatdoyouunderstandfromtheman’sanswer?
最新回复
(
0
)