首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在点x0的某邻域内具有一阶连续导数,且,则( )
设函数f(x)在点x0的某邻域内具有一阶连续导数,且,则( )
admin
2021-02-25
64
问题
设函数f(x)在点x
0
的某邻域内具有一阶连续导数,且
,则( )
选项
A、f(x
0
)是f(x)的极小值
B、f(x
0
)是f(x)的极大值
C、(x
0
,f(x
0
))是曲线y=f(x)的拐点
D、f(
0
)不是f(x)的极值,(x
0
,f(x
0
))也不是曲线y=f(x)的拐点
答案
A
解析
由于
,由极限的保号性,存在x
0
的某个邻域(x
0
-δ,x
0
+δ)(δ>0),当x∈(x
0
-δ,x
0
+δ),有
当x
0
-δ<x<x
0
时,f’(x)<0,当x
0
<x<x
0
+δ时,f’(x)>0,故f(x)在x=x
0
处取极小值,从而应选A.
转载请注明原文地址:https://kaotiyun.com/show/za84777K
0
考研数学二
相关试题推荐
已知A是n阶对称矩阵,B是n阶反对称矩阵,证明A—B2是对称矩阵。
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求Ax=0的一个基础解系.
已知三角形周长为2p,求出这样一个三角形,使它绕自己的一边旋转时体积最大.
设A是3阶矩阵,特征值为1,一1,一2,则下列矩阵中可逆的是
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且试证:(Ⅰ)存在,使f(η)=η;(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f′(ξ)一λ[f(ξ)一ξ]=1.
已知A是三阶矩阵,a1,a2,a3是线性无关的三维列向量,满足(Ⅰ)求矩阵A的特征值;(Ⅱ)求矩阵A的特征向量;(Ⅲ)求矩阵A*一6E的秩.
已知f(x)二阶可导,,则f’’(1)的值为().
设A,B,C都是n阶矩阵,满足ABC=E,则下列等式中不正确的是
(1)设x>0,y>0,z>0,求函数f(x,y,z)=xyz3在约束条件x2+y2+z2=5R2(R>0为常数)下的最大值;(2)由(1)的结论证明:当a>0,b>0,c>0时,
随机试题
现场干预试验必须具备哪些基本要素
蟾酥的性状特征有()
控释膜保护膜
“应收票据”项目应根据“应收票据”科目的期末余额填列。()
以下不属于个别督导的技巧是()。
试论缔约过失责任。
吉尼斯世界纪录和趣味有关,也和无聊有关。27个法国人用牙签搭建了微型的埃菲尔铁塔,一个美国人收集了600余双匡威运动鞋,一个古巴人做出了世界上最长的雪茄。吉尼斯就是无聊大观园,没有想不到,也不存在做不到。但太无聊的纪录连吉尼斯也会望而生畏,有人注册了互联网
材料1建设社会主义现代化国家、实现中华民族伟大复兴,是我们党孜孜以求的宏伟目标。自成立以来,我们党就团结带领人民为此进行不懈奋斗。随着改革开放逐步深化,我们党对制度建设的认识越来越深入。1980年,邓小平同志在总结“文化大革命”的教训时就指出:“
办事员小李需要整理一份有关高新技术企业的政策文件呈送给总经理查阅。参照“示例1.jpg”“示例2.jpg”,利用考生文件夹下提供的相关素材,按下列要求帮助小李完成文档的编排:在标题段落“附件1:国家重点支持的高新技术领域”的下方插入以图标方式显示的文档
【B1】【B12】
最新回复
(
0
)