首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(-1,1),使得f"’(ξ)=3.
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(-1,1),使得f"’(ξ)=3.
admin
2019-06-28
72
问题
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(-1,1),使得f"’(ξ)=3.
选项
答案
由泰勒公式得 [*] 两式相减得f"’(ξ
1
)+f"’(ξ
2
)=6. 因为f(x)在[-1,1]上三阶连续可导,所以f"’(x)在[ξ
1
,ξ
2
]上连续,由连续函数最值定理,f"’(x)在[ξ
1
,ξ
2
]上取到最小值m和最大值M,故2m≤f"’(ξ
1
)+f"’(ξ
2
)≤2M,即m≤3≤M. 由闭区间上连续函数介值定理,存在ξ∈[ξ
1
,ξ
2
][*](-1,1),使得f"’(ξ)=3.
解析
转载请注明原文地址:https://kaotiyun.com/show/zaV4777K
0
考研数学二
相关试题推荐
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明:存在ξ∈(0,1),使得f’(ξ)=1;
设函数f(x,y)=3x+4y—αx2一2αy2一2βxy。试问参数α,β满足什么条件时,函数有唯一极大值?有唯一极小值?
求极限。
23.证明:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(x)dx=f(η)(b一a);
设f(x)在[0,+∞]连续,且=0。证明至少存在ξ∈(0,+∞),使得f(ξ)+ξ=0。
椭球面S1是椭圆=1绕x轴旋转一周而成,圆锥面S2是过点(4,0)且与椭圆=1相切的直线绕x轴旋转一周而成。求S1及S2的方程;
已知齐次线性方程组有通解k1(2,一1,0,1)T+k2(3,2,1,0)T,则方程组的通解是__________。
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
求微分方程的通解_______.
设f(x,y)在区域D:x2+y2≤t2上连续且f(0,0)=4,则=______
随机试题
A.脐部圆形包块,加腹压后包块突出,平卧时包块消失B.卵黄管的脐端未闭,遗留较短的盲管C.脐带周围发生缺损,腹腔内脏脱出体外D.出生后见胃肠突出于腹壁外,脐和脐带正常,腹壁裂孔在脐的右侧并为纵向E.卵黄管的脐端有残留的黏膜形成息肉样红色突起,少量液
A、祛暑利湿,补气生津B、祛暑除湿,和胃消食C、祛暑解表,清热生津D、解表化湿,理气和中E、清热解毒,利湿化浊六合定中丸的功效()。
第二类精神药品处方印刷用纸为
抢救青霉素过敏性休克的首选药物是
EVA、PE类聚合物改性沥青混合料的废弃温度为()。
某公司为获得一项工程合同,拟向工程发包方的有关人员支付好处费8万元,公司市场部持公司的批示到财务部领取该笔款项。财务部经理谢某认为该项支出不符合有关规定,但考虑到公司主要领导已作了批示,遂同意拨付了款项。对谢某做法的下列认定中正确的是()。
我国对资本主义工商业进行社会主义改造的政策是和平赎买。()
小刚在一次演讲比赛中有五名裁判给他打分,除去最低分外,他的平均成绩是96分;加上最低分,它的平均成绩下降了3分。问其中打的最低分是多少?()
设f(x)连续,其中V={(x,y,z)|x2+y2≤t2,0≤z≤h}(t>0),求其中,[x]表示不超过x的最大整数.
WhatcanbecitedtoshowMr.Eliasson’sunderstandingoftotal-immersionart?
最新回复
(
0
)