首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A满足(aE—A)(bE—A)=O且a≠b.证明:A可对角化.
设n阶矩阵A满足(aE—A)(bE—A)=O且a≠b.证明:A可对角化.
admin
2018-04-15
31
问题
设n阶矩阵A满足(aE—A)(bE—A)=O且a≠b.证明:A可对角化.
选项
答案
由(aE—A)(bE—A)=0,得|aE—A|.|bE—A|=0,则|aE—A|=0或者|bE—A|=0.又由(aE—A)(bE—A)=0,得r(aE—A)+r(bE—A)≤n. 同时r(aE—A)+r(bE—A)≥r[(aE—A)一(bE—A)]=r[(a一b)E]=n. 所以r(aE—A)+r(bE—A)=n. (1)若|aE—A|≠0,则r(aE—A)=n,所以r(bE—A)=0,故A=bE. (2)若|bE—A|≠0,则r(bE—A)=n,所以r(aE—A)=0,故A=aE. (3)若|aE—A|=0且|bE—A|=0,则a,b都是矩阵A的特征值. 方程组(aE—A)X=0的基础解系含有n~r(aE—A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n一r(aE—A)个; 方程组(bE—A)X=0的基础解系含有n一r(bE—A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n一r(bE—A)个. 因为n一r(aE—A)+n一r(bE—A)=n.所以矩阵A有n个线性无关的特征向量,所以A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/zcX4777K
0
考研数学三
相关试题推荐
设随机变量X与Y相互独立同分布,其中P{X—i}=,i=1,2,3令U=max(X,Y),V=min(X,Y).(Ⅰ)求(U,V)的联合分布;(Ⅱ)求P{U=V);(Ⅲ)判断U,V是否相互独立,若不相互独立,计算U,V的相关系数.
设φ连续,且x2+y2+z2=(x+y-t)dt,则2z()________.
证明:
y=e2x+(1+x)ex是二阶常系数线性微分方程yˊˊ+ayˊ+βy=rex的一个特解,则α2+β2+r2=________.
求由方程2x2+2y2+z2+8xz一z+8=0所确定的函数z(x,y)的极值,并指出是极大值还是极小值.设,求出可由两组向量同时表示的向量.
当x→0时,微分方程(3x2+2)yˊˊ=6xyˊ的某个解与ex-1是等价无穷小,则该解为________.
设二次型f(x1,x2,x3)=xTAx=3x12+ax22+3x32-4x1x2-8x1x3-4x2x3,其中-2是二次型矩阵A的一个特征值.如果A2+kE是正定矩阵,求k的取值范围.
设f(t)连续,f(t)>0,f(-t)=f(t).令F(x)=|x-t|f(t)dt.-a≤x≤a.当x为何值时,F(x)取得最小值;
设四次曲线y=ax4+bx3+cx2+dx+f经过点(0,0),并且点(3,2)是它的一个拐点,过该曲线上点(0,0)与点(3,2)的切线交于点(2,4),则该四次曲线的方程为y=________.
设曲线y=f(x)与y=x2一x在点(1,0)处有公共的切线,则=_____
随机试题
在用卧式测长仪测量时,其读数结果是由三者相加得到的,即精密玻璃刻度尺的像上的读数、固定分划尺上的读数及螺旋线分划板内的圆周刻线尺上估读得的读数。()
埋设在一般泥土中的管道应用()防腐层。
患者,男性,27岁。因腰部受伤后伤口持续溢出淡红色液体,血压100/70mmHg,脉搏100次/分,出现休克症状。左上腹有压痛,但无肌紧张和反跳痛。对该患者的护理措施不当的是
骨关节炎关节肿大的特点不正确的是
下列说法正确的是()。
商业银行的()直接反映了其从宏观到微观的所有层面的运营状况及市场声誉。
在现代社会中,通常控制社会经济运行的两大并行力量是()。
华佗是我国东汉名医。一次,府吏倪寻和李延俩人均头痛发热。一同去请华佗诊治,华佗经过仔细的望色、诊脉,开出两付不同的处方。给倪寻开的是泻药,给李延开的是解表发散药。二人不解:我俩患的是同一症状,为何开的药方却不同呢?是不是华佗弄错了?于是,他们向华佗请教。华
为了把观众从电视夺回来,好莱坞推出了一种新玩艺——立体电影。戴着特殊眼镜的观众像在观看《布瓦那魔鬼》及《蜡屋》这类惊险片那样,发现自己躲在逃跑的火车及魔鬼的后面,感受真实刺激。2010年由著名导演詹姆斯.卡梅隆执导3D电影《阿凡达》更是大获成功,立体影片得
--Neverthoughttoseeyouhere.
最新回复
(
0
)