首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为实矩阵,证明ATA的特征值都是非负实数.
设A为实矩阵,证明ATA的特征值都是非负实数.
admin
2018-06-27
104
问题
设A为实矩阵,证明A
T
A的特征值都是非负实数.
选项
答案
A
T
A是实对称矩阵,特征值都是实数.设λ是A
T
A的一个特征值,η是属于λ的一个实 特征向量,则A
T
Aη=λη.于是η
T
A
T
Aη=λη
T
η,即 [*] (η,η)>0,(Aη,Aη)≥0,因此λ≥0.
解析
转载请注明原文地址:https://kaotiyun.com/show/zik4777K
0
考研数学二
相关试题推荐
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b—2,a+2b)T,β=(1,3,-3)T,试讨论当a、b为何值时,(1)β不能由α1,α2,α3线性表示;(2)β可由α1,α2,α3唯一地线性表示,并求出表示式;
设n阶矩阵,则|A|_______。
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,0为坐标原点,若梯形OCMA的面积与曲边三角形CBM的面积之和为,求f(x)的表达式.
若函数f(x)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A的特征值;
设函数f(x)在[a,+∞)内二阶可导且f’’(x)a,f’(b)>0,f’(b)
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+Py’+qy=f(x)的三个特解.求这个方程和它的通解:
设是3阶可逆矩阵.B是3阶矩阵,满足则B有特征值()
设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为其中P=(e1,e2,e3).若Q=(e1,一e3,e2),则f(x1,x2,x3)在正交变换x=Qy下的标准形为
随机试题
()是指法定义务人不履行法定义务,而该义务又不能由他人代为履行,公安行政管理主体可通过使不履行义务的法定义务人承担新的持续不断的给付义务,促使其履行义务的行政措施。
皮亚杰的“三山实验”证实了儿童思维带有明显的特点,即()。
求
下列属于动风的姿态有( )
患者,男,34岁。因十二指肠溃疡行毕Ⅱ式手术。术后8天进食,进食后出现上腹部饱胀感,后出现呕吐,呕吐物为食物和胆汁。护士根据患者的情况,考虑其出现了
就监理单位内部而言,监理规划的主要作用表现在( )。
甲公司2020年5月14日获得一项外观设计专利,乙公司未经许可,以生产经营目的制造该专利产品。丙公司未经甲公司许可,以生产经营目的所为的下列行为中构成侵权行为的有()。
对低年级学生告状行为的研究宜采用()
根据以下资料。回答问题。以下哪项最能准确描述2016年生活服务电商市场中,三个不同细分市场交易规模同比增量的比例关系?
设z=f(xy),其中函数f可微,则=()
最新回复
(
0
)