设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0. 证明:方程f"(x)-f(x)=0在(0,1)内有根。

admin2019-09-23  39

问题 设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.
证明:方程f"(x)-f(x)=0在(0,1)内有根。

选项

答案令Φ(x)=e-x[f(x)+f’(x)],因为Φ(0)=Φ(1)=0,所以由罗尔定理,存在c∈(0,1),使得Φ’(c)=0,而Φ’(x)=e-x[f"(x)-f(x)]且e-x≠0,所以方程f"(c)-f(c)=0在(0,1)内有根。

解析
转载请注明原文地址:https://kaotiyun.com/show/zmA4777K
0

最新回复(0)