首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
admin
2018-05-21
30
问题
三元二次型f=X
T
AX经过正交变换化为标准形f=y
1
2
+y
2
2
-2y
3
2
,且A
*
+2E的非零特征值对应的特征向量为α
1
=
,求此二次型.
选项
答案
因为f=X
T
AX经过正交变换后的标准形为f=y
1
2
+y
2
2
-2y
3
2
,所以矩阵A的特征值为λ
1
=λ
2
=1,λ
3
=-2.由|A|=λ
1
λ
2
λ
3
=-2得A
*
的特征值为μ
1
=μ
2
=-2,μ
3
=1,从而A
*
+2E的特征值为0,0,3,即α
1
为A
*
+2E的属于特征值3的特征向量,故也为A的属于特征值λ
3
=-2的特征向量. 令A的属于特征值λ
1
=λ
2
=1的特征向量为 [*] 因为A为实对称矩阵,所以有α
1
T
α=0,即x
0
+x
3
=0故矩阵A的属于λ
1
=λ
2
=1的特征向量为 [*] 令P=(α
2
,α
3
,α
1
) [*] 所求的二次型为 f=X
T
A=-1/2x
1
2
+x
2
2
-[*]x
3
2
-3x
1
x
3
解析
转载请注明原文地址:https://kaotiyun.com/show/07r4777K
0
考研数学一
相关试题推荐
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=xyf"xy(x,y)dxdy.
设函数f(x)连续且恒大于零,其中Ω(t)={x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.(1)讨论F(t)在区间(0,+∞)内的单调性.(2)证明当t>0时,F(t)>G(t).
设函数f(x)在R上具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,起点为(a,b),终点为(c,d).记(1)证明曲线积分I与路径L无关.(2)当ab=cd时,求I的值.
已知f(x)在[0,2]上连续,在(0,2)内二阶可导,且∫12f(x)dx=f(2).证:ε∈(0,2),使f’(ε)+f"(ε)=0.
设f(x),g(x)具有二阶连续导数,且[y2f(x)+2yex+2yg(x)]dx+2[yg(x)+f(x)]dy=0,其中L为平面上任意简单闭曲线.(Ⅰ)求f(x)和g(x),其中f(0)=g(0)=0;(Ⅱ)计算沿任一条曲线从点(0,0)到点(
设,B是三阶非零矩阵,且AB=0,则()
设A是秩为3的4阶矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个解.若α1+α2+α3+=(0,6,3,9)T,2α2一α3=(1,3,3,3)T,k为任意常数,则Ax=b的通解为()
进行5次试验,测得锰的熔化点(℃)如下:12691271125612651254已知锰的熔化点服从正态分布,是否可以认为锰的熔化点显著高于1250℃?(取显著性水平α=0.01)
某厂生产的各台仪器,可直接出厂的占0.7.需调试的占0.3,调试后可出厂的占0.8,不能出厂的(不合格品)占0.2.现生产了n(,n≥2)台仪器(设每台仪器的生产过程相互独立),求:(1)全部能出厂的概率;(2)恰有2台不能出厂的概率;(3)至少有2
某试验性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐.新、老非熟练工经过培训及实践至年终考核有成为熟练工.设第n年1月份统计的熟练工与非熟练工所占百分比分别为χn和yn,记成向量.(1
随机试题
控制性降压
阳明经头痛的特征是
依据《安全生产法》的规定,要明确各级人民政府的领导地位和各有关部门的监督管理职能,发挥其监督管理主体的作用,必须将各级人民政府在安全生产中的地位和基本职责()。
锚喷混凝土加固基坑坑壁采用的喷射混凝土的强度必须满足设计要求且不低于( )MPa。
下列各项中,属于期间费用核算内容的有()。
世界各国海关对外国游客或非当地居民的检查,有以下情况()。
由于看到鸟的飞翔而发明了飞机,这种创造活动的心理影响机制是_______。
下列说法有误的是()。
计算机网络的最大优点是
Animalsdomanyusefulandentertainingjobs.(38)Dogsareparticularlyvaluableinguidingtheblind(atraineddogcanlearn
最新回复
(
0
)