首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
“|f(x)|在x=a处可导”是“f(x)在x=a处可导”的 ( )
“|f(x)|在x=a处可导”是“f(x)在x=a处可导”的 ( )
admin
2018-12-21
55
问题
“|f(x)|在x=a处可导”是“f(x)在x=a处可导”的 ( )
选项
A、充分条件而非必要条件.
B、必要条件而非充分条件.
C、既非充分又非必要条件.
D、充分必要条件.
答案
C
解析
举反例说明既非充分又非必要条件.例如设
|f(x)|=1在x=a处可导,但f(x)在x=a处不连续,不可导.又如,设f(x)=x-a,在x=a处f(x)可导,f
’
(x)=1.但|f(x)|=|x-a|在x=a处形成尖点,|f(x)|在x=a处不可导.
转载请注明原文地址:https://kaotiyun.com/show/08j4777K
0
考研数学二
相关试题推荐
(2012年)已经知A=,二次型f(χ1,χ2,χ3)=χT(ATA)χ的秩为2.(Ⅰ)求实数a的值;(Ⅱ)求正交变换χ=Qy将f化为标准形.
(2009年)设α,β为3维列向量,βT为β的转置.若矩阵αβT相似于,则βTα=_______.
(2010年)设A为4阶实对称矩阵,且A2+A=O.若A的秩为3,则A相似于【】
(2007年)曲线y=±ln(1+eχ)渐近线的条数为【】
(2015年)设矩阵A=,且A3=O(Ⅰ)求a的值;(Ⅱ)若矩阵X满足X-XA2-AX+AXA2=E,其中E为3阶单位矩阵,求X.
(1998年)求函数f(χ)=在区间(0,2π)内的间断点,并判断其类型.
(1997年)已知y1=χeχ+e2χ,y2=χeχ+e-χ,y3=χeχ+e2χ-e-χ是某二阶线性非齐次微分方程的三个解,求此微分方程.
(1992年)函数y=χ+2cosχ在区间[0,]上的最大值为_______.
已知四元二个方程的齐次线性方程组的通解为X=k1[1,0,2,3]T+k2[0,1,一l,1]T,求原方程组.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零,证明:α1,α2,…,αs,β中任意5个向量线性无关.
随机试题
天然的雄激素是:
简述教学模式的种类。
在社会主义市场经济条件下,加强医德建设,可以
张女士,57岁,化工厂退休职工,肥胖,绝经5年。高血压史20余年。因两次出现阴道流血,来社区卫生站咨询是否需进一步诊治。医生建议她应去中心医院明确诊断。张女士被诊断为子宫内膜癌,没有发现转移病灶。该病首选治疗方案是
按照承揽合同的法律规定,下列关于定作人义务的表述中,正确的是()。
《浙江省旅游管理条例》规定,发展旅游业应当实行()主导。
导游将散客旅游者接到饭店后应做好的工作有()。
按照设计图想象自己未来家的样子,这属于()。
【给定资料一】中国人讲究礼尚往来,逢年过节来往走动,互赠礼物,互祝安康,也是美好情谊的表达。特别是在结婚这样的喜事上更是讲究礼尚往来。操办婚礼无可厚非,但是动辄十几万甚至几十万的彩礼、几百几千的份子钱,亲朋好友连吃多天的婚宴酒席等大操大办、铺张浪
Youknowyouhavetoread"betweenthelines"togetthemostoutofanything.Iwanttopersuadeyoutodosomethingequallyim
最新回复
(
0
)