首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
admin
2019-05-12
45
问题
设A为三阶矩阵,方程组AX=0的基础解系为α
1
,α
2
,又λ=一2为A的一个特征值,其对应的特征向量为α
3
,下列向量中是A的特征向量的是( ).
选项
A、α
1
+α
3
B、3α
3
一α
1
C、α
1
+2α
2
+3α
3
D、2α
1
—3α
2
答案
D
解析
因为AX=0有非零解,所以r(A)<n,故0为矩阵A的特征值,α
1
,α
2
为特征值0所对应的线性无关的特征向量,显然特征值0为二重特征值,若α
1
+α
3
为属于特征值λ
0
的特征向量,则有A(α
1
+α
3
)=λ
0
(α
1
+α
3
),注意到
A(α
1
+α
3
)=0α
1
—2α
3
=一2α
3
,故一2α
3
=λ
0
(α
1
+α
3
)或λ
0
α
1
+(λ
0
+2)α
3
=0,因为α
1
,α
3
线性无关,所以有λ
0
=0,λ
0
+2=0,矛盾,故α
1
+α
3
不是特征向量,同理可证3α
3
一α
1
及α
1
+2α
2
+3α
3
也不是特征向量,显然2α
1
-3α
2
为特征值0对应的特征向量,选(D).
转载请注明原文地址:https://kaotiyun.com/show/0A04777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内存在二阶导数,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在η∈(a,b),使得f"(η)-3f’(η)+2f(η)=0
A、L1∥L3B、L1∥L2C、L2⊥L3D、L1⊥L2D三条直线的方向向量为s1={-2,-5,3},s2={3,3,7},s3={1,3,-1}×(2,1,-1}={-2,-1,-5},因为s1.s2=0,所以L1⊥L2,选(D).
设总体X服从正态分布N(μ,σ2)(σ>0).从该总体中抽取简单随机样本X1,X2,…,X2n(n>2).令Xi,求统计量U=的数学期望.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设(X1,X2,…,Xn)(n≥2)为标准正态总体X的简单随机样本,则().
设收敛,则下列级数必收敛的是().
求曲线y=与x轴所围成的平面区域绕y轴旋转而成的几何体的体积.
设f(x)在区间[a,b]上阶连续可导,证明:存在ξ∈(a,b),使得∫abf(x)dx=(b-a)f’’(ξ).
已知函数y=,试求其单调区间、极值以及函数图形的凹凸区间、拐点和渐近线,并画出函数的图形。
设(X,Y)是二维随机变量,且随机变量X=X+Y,X2=X-Y,已知(X1,X2)的概率密度函数为f(χ1,χ2)=(Ⅰ)求X与Y的边缘概率密度;(Ⅱ)计算X与Y的相关系数ρXY.
随机试题
著名边塞诗人岑参最擅长的诗歌体裁是()。
讲座、讨论会、交谈属于()
呋塞米应用后,尿中哪些物质排出减少:
参与血小板聚集反应的是哪种血小板膜糖蛋白
矿业工程在颁发工程接受证书前的(),业主(监理工程师)可以发布变更指示或以要求承包商递交建议书的任何一种方式提出变更。
下列各项不属于最低生活保障标准确定方法的是( )。
根据《证券投资基金运作管理办法》的规定,货币市场基金、中短债基金不得投资于流通受限证券。()
在当代资本主义国家中出现了“无人工厂”,这种资本主义条件下的生产自动化从本质上看
设(P(x,y),Q(x,y))=,n为常数,问∫LPdx+Qdy在区域D={(x,y)|(x,y)∈R2,(x,y)≠(0,0)}是否与路径无关.
位于
最新回复
(
0
)