首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
admin
2019-05-12
56
问题
设A为三阶矩阵,方程组AX=0的基础解系为α
1
,α
2
,又λ=一2为A的一个特征值,其对应的特征向量为α
3
,下列向量中是A的特征向量的是( ).
选项
A、α
1
+α
3
B、3α
3
一α
1
C、α
1
+2α
2
+3α
3
D、2α
1
—3α
2
答案
D
解析
因为AX=0有非零解,所以r(A)<n,故0为矩阵A的特征值,α
1
,α
2
为特征值0所对应的线性无关的特征向量,显然特征值0为二重特征值,若α
1
+α
3
为属于特征值λ
0
的特征向量,则有A(α
1
+α
3
)=λ
0
(α
1
+α
3
),注意到
A(α
1
+α
3
)=0α
1
—2α
3
=一2α
3
,故一2α
3
=λ
0
(α
1
+α
3
)或λ
0
α
1
+(λ
0
+2)α
3
=0,因为α
1
,α
3
线性无关,所以有λ
0
=0,λ
0
+2=0,矛盾,故α
1
+α
3
不是特征向量,同理可证3α
3
一α
1
及α
1
+2α
2
+3α
3
也不是特征向量,显然2α
1
-3α
2
为特征值0对应的特征向量,选(D).
转载请注明原文地址:https://kaotiyun.com/show/0A04777K
0
考研数学一
相关试题推荐
设二维非零向量α不是二阶方阵A的特征向量.证明α,Aα线性无关;
设f(x)在[a,b]上二阶可导,且f"(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(xn).
设随机变量X,Y相互独立,它们的分布函数为FX(x),FY(y),则Z=min{X,Y}的分布函数为().
设A为n阶非零矩阵,且存在自然数k,使得Ak=O.证明:A不可以对角化.
下列广义积分发散的是().
求幂级数的和函数.
设f(x)在[0,1]上连续且满足,f(0)=1,f’(x)一f(x)=a(x一1).y=f(x),x=0,x=1,y=0围成的平面区域绕x轴旋转一周所得的旋转体体积最小,求f(x).
袋中有12只球,其中红球4个,白球8个,从中一次抽取两个球,求下列事件发生的概率:两个球颜色相同.
设有微分方程y’-2y=φ(x),其中φ(x)=试求:在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
函数f(x,y)=x4-3x2y2+x-2在点(1,1)处的二阶泰勒多项式是()
随机试题
何谓体育课的定性评价与定量评价?举例说明。
劳动力市场
女性,28岁。因服敌敌畏约30ml后出现呕吐、出汗、流涎、呼吸困难、意识不清2小时被人送医院急诊。本例病人如果有肺水肿,则首要的措施是
某地级市位于沿海低氟区,有人口25万,20年来龋齿患病水平呈上升趋势,市卫生行政部门计划开展社区口腔预防保健工作,要求市牙防所专家作出口腔保健规划和具体工作计划。为此,项目技术指导组提出了切实可行的方案如下经过资料分析提出了针对学龄前儿童的口腔预防措施
药物相互作用对药动学的影响A、与多潘立酮配伍B、与酶抑制剂配伍C、青霉素与保泰松配伍D、亚胺培南与西拉司丁配伍E、阿司匹林与抗凝血药配伍影响分布
某居住区的公共中心建有约4000m2的建筑,依据《城市居住区规划设计规范》,需设置的车位数不少于:
苹果对核桃,犹如花生对()。
经典之所以为经典。就是因为它不但历久弥新,而且常读常新。常言道,“读书百遍其义自见”,苏轼也说“故书不厌百回读,熟读深思子自知”。经典之书,不同年龄读有不同年龄的体会,不同境遇读有不同境遇的领悟。小时候背诵经典,可能还不能领会其中要旨,但是背熟了,就成为一
在下面句子的横线上填上恰当的一项是______。在煤业联合公司大厦的总入口处,军队的夜间活动仍继续着,______,______,______,______,______。①各种枪械铿铿作响②官兵们不断进进出出③卡车
代数|3e+lgx+arctgy|对应的VisualBasic表达式是
最新回复
(
0
)