首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知是f(x)当x>0的一个原函数,则∫x2f′(x)dx=__________.
已知是f(x)当x>0的一个原函数,则∫x2f′(x)dx=__________.
admin
2020-12-10
30
问题
已知
是f(x)当x>0的一个原函数,则∫x
2
f′(x)dx=__________.
选项
答案
(1nx—1)(1nx—2)+C
解析
由题设知
用分部积分法求不定积分,得
∫x
2
f‘(x)dx=x
2
f(x)—2∫xf(x)dx
=(1—lnx)—
=1—lnx+2∫(1nx—1)d(lnx—1)
=1—lnx+(lnx—1)
2
+C
=(lnx—1)(lnx—2)+C.
转载请注明原文地址:https://kaotiyun.com/show/0X84777K
0
考研数学二
相关试题推荐
设L:(x≥0,y≥0],过点L上一点作切线,求切线与曲线所围成面积的最小值。
设矩阵B的列向量线性无关,且BA=C,则().
设函数f(x)在(-∞,+∞)上连续,其导函数的图形如右图所示,则f(x)有().
求微分方程y"+y’-2y=xex+sin2x的通解。
极限.
已知y=u(x)x是微分方程的解,则在初始条件|x=2下,上述微分方程的特解是y=_______.
设有曲线y=,过原点作其切线,求由此曲线、切线及x轴围成的平面图形绕x轴旋转一周所得旋转体的表面积.
[2004年]设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上f(x)=x(x2一4),若对任意x都满足f(x)=kf(x+2),其中k为常数.问k为何值时,f(x)在x=0处可导.
设曲线y=χn在点(1,1)处的切线交χ轴于点(ξn,0),求
设矩阵A=(1)若A有一个特征值为3,求a;(2)求可逆矩阵P,使得PTA2P为对角矩阵.
随机试题
肿瘤免疫监视中,主要的细胞免疫执行者是
A.递氢作用B.转氨作用C.转酮醇作用D.转酰基作用CoASH作为辅酶参与
短暂性脑缺血发作的特点是
在日本血吸虫生活史中下面哪项是错误的
患儿,男性,5岁。高热1天,腹泻6~7次,为黏液性脓血便,腹痛伴里急后重,反复惊厥,逐渐出现昏睡、神志不清。病前吃过未洗的黄瓜,诊断为细菌性痢疾。其临床类型属于
张大、张二和张三系兄弟,父母早亡。三人共同继承了父母在A县的房屋共五间,房屋的产权证明,法定继承公证书等由张三保管。由于三人均在B城市生活工作,没有在老家居住。5年后,张三由于生意失败,急需资金周转,便将老家五间房屋转卖给位于C城的生意伙伴崔某。不久,张二
重要工程的单桩承载力宜通过现场静载试验确定,在同一条件下试桩数量不宜少于总桩数的1%,并不少于3根。()
把心理学作为一门独立的学科,是德国的________创立的第一个________实验室。
材料1978年改革开放以来,我国国民经济保持持续快速健康发展,现代化建设事业稳步推进,综合国力和国际竞争力显著提高,人民生活总体上达到小康水平。从1978年到2007年,我国国内生产总值由3645亿元增长到24.95万亿元,年均实际增长9.8%
A、Thewomandoesmuchexercise.B、Themandoesmuchexercise.C、Thewomanalwaysgetsupveryearly.D、Themanliftsweightseve
最新回复
(
0
)