[2003年] 设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f′(x>0.若极限存在,证明: 在(a,b)内存在与(2)中手相异的点η,使f′(η)(b2一a2)=f(x)dx.

admin2019-06-09  40

问题 [2003年]  设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f′(x>0.若极限存在,证明:
在(a,b)内存在与(2)中手相异的点η,使f′(η)(b2一a2)=f(x)dx.

选项

答案因f(ξ)=f(ξ)一0=f(ξ)一f(a),在[a,ξ]上应用拉格朗日中值定理知,在(a,ξ)内存在一点η,使f(ξ)=f′(η)(ξ一a),从而由(2)的结论得 [*]即 f′(η)(b2一a2)=[*]f(x)dx.

解析 由f(ξ)=f(ξ)一f(a),对f(x)在[a,ξ]上再次使用拉格朗日中值定理即可得证.
转载请注明原文地址:https://kaotiyun.com/show/0eV4777K
0

最新回复(0)