首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列曲面所围成的立体在xOy面上的投影区域: (1)z=x2+y2与z=2-x2-y2; (2),x2+y2=4与z=0.
求下列曲面所围成的立体在xOy面上的投影区域: (1)z=x2+y2与z=2-x2-y2; (2),x2+y2=4与z=0.
admin
2019-01-05
104
问题
求下列曲面所围成的立体在xOy面上的投影区域:
(1)z=x
2
+y
2
与z=2-x
2
-y
2
;
(2)
,x
2
+y
2
=4与z=0.
选项
答案
(1)在xOy面上的投影为D
xy
={(x,y)|x
2
+y
2
≤1}; (2)在xOy面上的投影为D
xy
={(x,y)|x
2
+y
2
≤1}.
解析
转载请注明原文地址:https://kaotiyun.com/show/0eW4777K
0
考研数学三
相关试题推荐
设函数f(u)可微,且f’(0)=,则z=分(4x2一y2)在点(1,2)处的全微分dz|(1,2)=________。
设α1,α2,…,αn是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
设随机变量X的密度函数f(x)=且P{1<X<2}=P{2<X<3},则常数A=________;B=________;概率P{2<X<4}=________;分布函数F(x)=________。
证明4arctanx—x+=0恰有两个实根。
使用分部积分法和换元积分法。[*]
线性方程组(Ⅰ)与(Ⅱ)有公共的非零解,求a,b的值和全部公共解。
设二次型f(x1,x2,x3)=x12+x22+x33+2ax1x2+2x1x3+2bx2x3的秩为1,且(0,1,一1)T是二次型矩阵的特征向量,求正交变换x=Qy,把二次型化为标准形f(x1,x2,x3);
设A为三阶矩阵,λ1,λ2,λ3是A的三个不同的特征值,对应的特征向量分别为α1,α2,α3,令β=α1+α2+α3。如果A3β=Aβ,求秩r(A—E)及行列式|A+2E|。
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2若β=α1+α2+α3,求方程组AX=β的通解.
曲线的拐点有
随机试题
下列检查中,哪项应先检查下列各项为本病的基本预防措施,除了
在血吸虫的生活史中,对人畜具有感染性的阶段是()
A、中药饮片包装标签B、药品的内标签C、用于运输、贮藏的药品的包装标签D、原料药的标签至少应当注明品名、规格、产地、生产企业、产品批号、生产日期等内容的标签是
关于公司与独资企业的区别,下列哪些说法是正确的?()
有限责任公司的注册资本为在公司登记机关登记的全体股东认缴的()。
根据以下资料。回答81—85题。2006年末与2002年末相比,全社会主要运输方式完成客运量由1608150万人增加到2024158万人,年均增长5.9%;旅客周转量由14126亿人公里增加到19197亿人公里,年均增长8.0%;货运量由14827
下列诗句和作者搭配正确的是:
延长美国的学年,使它与欧洲和日本的相一致的建议经常会遭到这样的反对:削减学校的三个月的暑假将会违反已经确立的可追溯到19世纪的美国传统。确实,在19世纪,大多数的学校在夏季时都放假三个月,但这仅仅是因为在农村地区,成功的收割离不开孩子们的劳作。如果任何政策
电子商务应用系统通常包含【 】系统、支付网关系统、业务应用系统和用户及终端系统。
Namedafteranex-GovernorofNewSouthWales,SydneyistheState’scapitalcity.Locatedonthesouth-eastcoastofAustralia
最新回复
(
0
)