设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=.证明:存在ξ∈(0,2),使得f’’’(ξ)=2.

admin2016-09-12  40

问题 设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=.证明:存在ξ∈(0,2),使得f’’’(ξ)=2.

选项

答案方法一 先作一个函数P(x)=ax3+bx2+cx+d,使得 P(0)=f(0)=1,P’(1)=f’(1)=0,P(2)=f(2)=[*],P(1)=f(1). 则P(x)=[*] 令g(x)=f(x)-P(x),则g(x)在[0,2]上三阶可导,且g(0)=g(1)=g(2)=0,所以存在c1∈(0,1),c2∈(1,2),使得g’(c1)=g’(1)=g’(c2)=0

解析
转载请注明原文地址:https://kaotiyun.com/show/0mt4777K
0

最新回复(0)