设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,且此曲线上点(0,1)处的切线方程为y=x+1,求该曲线的方程,并求函数y=y(x)的极值.

admin2014-01-26  35

问题 设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,且此曲线上点(0,1)处的切线方程为y=x+1,求该曲线的方程,并求函数y=y(x)的极值.

选项

答案因曲线向上凸,故y"<0,又由已知,得 [*],即y”=-(1+y’ 2)。 由曲线经过点(0,1)处及切线方程.y=x+1,可得初始条件y(0)=1,y’(0)=1. 令p=y’,得p’=-(1+p2),分离变量并积分得arctanp=C1—x,即 arctany’=C1-x, 代入初始条件y(0)=1,y’(0)=1,得[*], 有[*],两边积分得[*] 代入条件y(0)=1,得[*],所以所求曲线方程为 [*] 因[*]是周期函数,故取其含x=0在内且连续的一支为 [*] 当[*]时,y→-∞,故函数无极小值, 当[*]时,y取到极大值,极大值为[*]。

解析 [分析]  由曲率的计算公式和已知条件建立一个二阶微分方程,由曲线经过点(0,1)处及切线方程y=x+1,可得初始条件y(0)=1,y’(0)=1.
    [评注]  本题是一道综合题,主要考查曲率、可降阶微分方程求解及函数的极值问题,综合相关的知识点构造综合题型是考研命题的一大趋势.
转载请注明原文地址:https://kaotiyun.com/show/1m34777K
0

最新回复(0)