首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2000年)设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
(2000年)设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
admin
2021-01-25
77
问题
(2000年)设函数f(x)在[0,π]上连续,且∫
0
π
f(x)dx=0,∫
0
π
f(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ
1
,ξ
2
,使f(ξ
1
)=f(ξ
2
)=0.
选项
答案
令F(x)=∫
0
π
f(t)dt,0≤x≤π 则有F(0)=0,F(π)=0,又因为 0=∫
0
π
f(x)cosxdx=∫
0
π
cosxdF(x)=F(x)cosx|
0
π
+∫
0
π
F(x)sinxdx=∫
0
π
F(x)sinxdx 所以存在ξ∈(0,π),使F(e)sins=0,因若不然,则在(0,π)内或F(x)sinx恒为正,或F(x)sinx恒为负,均与 I F(x)sinxdx=0矛盾.但当ξ∈(0,π)时,sins≠0,故F(ξ)=0. 由以上证得 F(0)=F(ξ)=F(π)=0 (0<ξ<π) 再对F(x)在区间[0,ξ,[ξ,π]上分别用罗尔中值定理知至少存在ξ
1
∈(0,ξ),ξ
2
∈(ξ,π),使 F’(ξ
1
)=F’(ξ
2
)=0 即 f(ξ
1
)=f(ξ
2
)=0
解析
转载请注明原文地址:https://kaotiyun.com/show/4fx4777K
0
考研数学三
相关试题推荐
两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布.首先开动其中一台,当其发生故障时停用,而另一台自动开动.试求两台记录仪无故障工作的总时间T的概率密度f(t)、数学期望和方差.
设在一次试验中事件A发生的概率为p,现进行n次独立试验,则A至少发生一次的概率为__________,而事件A至多发生一次的概率为___________.
随机地向半圆(a为正常数)内掷一点,点落在半圆内任何区域内的概率与区域的面积成正比,则原点和该点的连线与x轴的夹角小于π/4的概率为__________.
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时).已知X和Y的联合分布函数为问X与Y是否相互独立?
设A,B,C三个事件两两独立,则A,B,C相互独立的充分必要条件是().
已知矩阵B=相似于对角矩阵.(1)求常数a的值;(2)用正交变换化二次型f(X)=XTBX为标准形,其中X(χ1,χ2,χ3)T为3维向量.
(2018年)将长为2m的铁丝分成三段,依次围成圆、正方形与正三角形.三个图形的面积之和是否存在最小值?若存在,求出最小值.
改变积分次序
设X的概率密度为(I)求a,b的值;(Ⅱ)求随机变量X的分布函数;(Ⅲ)求Y=X3的密度函数.
设求
随机试题
受委托实施行政处罚权的组织必须是依法成立的管理公共事务的事业组织。()
drink空格位于动词短语addedto后,应填入表示某个事物的名词。录音原文中的morelimes“更多的酸橙汁”是题目中extralimes的同义替换。
测定聚合物相对分子质量的方法有()等。
下列哪项不属于病理性红细胞减少?
A.月经来潮前或来潮6~12小时内刮宫B.分段诊断性刮宫C.月经周期第5天刮宫D.先用抗生素控制感染再刮宫E.急症刮宫以下各种情况选择刮宫的时机是疑为子宫内膜结核
一般用于固定标本的荧光抗体的适度F/P比值为
患儿,4个月。开始添加莱泥,近日来大便日行2次,性状稍稀,夹有未消化菜泥,一般情况如前。以下处理方法中恰当的是()
根据现代激励理论,下列因素中真正能对组织员工产生激励作用的是()。
A.一碘酪氨酸B.三碘甲腺原氨酸C.甲状腺素D.反三碘甲腺原氨酸E.二碘酪氨酸甲状腺分泌的激素主要是
HumanandLifeIfyouintendusinghumorinyourtalktomakepeoplesmile,youmustknowhowtoidentifysharedexperience
最新回复
(
0
)