首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在区间[0,1]上可导,f(1)=2χ2f(χ)dχ.证明:存在ξ∈(0,1),使得2f(ξ)+ξf′(ξ)=0.
设f(χ)在区间[0,1]上可导,f(1)=2χ2f(χ)dχ.证明:存在ξ∈(0,1),使得2f(ξ)+ξf′(ξ)=0.
admin
2019-08-23
35
问题
设f(χ)在区间[0,1]上可导,f(1)=2
χ
2
f(χ)dχ.证明:存在ξ∈(0,1),使得2f(ξ)+ξf′(ξ)=0.
选项
答案
令φ(χ)=χ
2
f(χ),由积分中值定理得f(1)=2[*]χ
2
f(χ)dχ=c
2
f(c),其中c∈[0,[*]],即φ(c)=φ(1),显然φ(χ)在区间[0,1]上可导. 由罗尔中值定理,存在ξ∈(c,1)[*](0,1),使得φ′(ξ)=0.而P′(χ)=2χf(χ)+χ
2
f′(χ), 所以2ξf(ξ)+ξ
2
f′(ξ)=0,注意到ξ≠0,故2f(ξ)+ξf′(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/1oA4777K
0
考研数学二
相关试题推荐
设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明:(1)在(a,b)内,g(x)≠0;(2)在(a,b)内至少存在一点ξ,使
设f(x)在[0,1]上二阶连续可导且f(0)=f(1),又|f"(x)|≤M,证明:|f’(x)|≤
设A,B是n阶方阵,B及E+AB可逆,证明:E+BA也可逆,并求(E+BA)一1.
设数列极限函数,则f(x)的定义域I和f(x)的连续区间J,分别是()
计算(x2+y2)dxdy,其中D是由y=一x,所围成的平面区域。[img][/img]
设z=z(x,y)是由方程x2+y2一z=φ(x+y+z)所确定的函数,其中φ具有二阶导数且φ’≠一1。记u(x,y)=求[img][/img]
设z=z(x,y)是由方程x2+y2一z=φ(x+y+z)所确定的函数,其中φ具有二阶导数且φ’≠一1。求dz;
设函数f(u,v)具有二阶连续偏导数z=f(x,xy),则=______。
设其中f(x)在x=0处二阶可导,且f(0)=f’(0)=1。a,b为何值时,g(x)在x=0处可导。
积分=______。
随机试题
求由曲线y=x2与x=2,y=0所围成图形分别绕x轴,y轴旋转一周所生成的旋转体的体积.
产后“三急”是指()
关联方关系存在形式中的关系密切的家庭成员包括父母,配偶,兄弟,姐妹和子女。()
幼儿教师在教授动作示范时往往采用“镜面示范”,原因是()。
2019年6月12日,李克强总理主持召开国务院常务会议,会议指出,以企业为主体,拓展多元化国际市场。有利于促进外贸稳中提质和经济平稳运行。()
A、27B、8C、21D、18D此题答案为D。每行前两个数字之差除以3等于第三个数。(63-9)÷3=(18)。
由元素序列(27,16,75,38,51)构造平衡二叉树,则首次出现的最小不平衡子树的根(即离插入结点最近且平衡因子的绝对值为2的结点)是()。
桌球就是台球。几乎所有人都知道丁俊晖是台球高手,但很少有人知道丁俊晖是桌球高手。以下哪项陈述能最有效地解决上文中的不一致之处?
Newresearchontechnologyandpublicpolicyfocusesonhowseemingly(i)____designfeatures,generallyoverlookedinmostanal
A、SportsintheUnitedStates.B、ThemostpopularsportsintheUnitedSports.C、ThreepopularsportsintheUnitedStates.D、Sp
最新回复
(
0
)