设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f’(x)>0,如果存在,证明: (1)f(x)>0,x∈(a,b); (2)存在ξ∈(a,b),使得 (3)存在与(2)中ξ不同的η∈(a,b),使得f’(η)(b2—a2)=

admin2018-11-11  61

问题 设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f’(x)>0,如果存在,证明:
(1)f(x)>0,x∈(a,b);
(2)存在ξ∈(a,b),使得
(3)存在与(2)中ξ不同的η∈(a,b),使得f’(η)(b2—a2)=

选项

答案 (1)由于f(x)在[a,b]上连续,所以f(a)=[*] 又f’(x)>0,故f(x)单调递增,对x∈(a,b),有f(x)>f(a)=0. (2)对函数g(x)=x2和h(x)=∫axf(t)dt在[a,b]上利用柯西中值定理,存在ξ∈(a,b),使 [*] (3)在[a,ξ]上由拉格朗日中值定理,存在η∈(a,ξ),使得f(ξ)=f’(η)(ξ一a),再由(2)的结论可得f’(η)(b2-a2)=[*]

解析
转载请注明原文地址:https://kaotiyun.com/show/uRj4777K
0

最新回复(0)