首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B是两个n阶实对称矩阵,并且A正定.证明: (1)存在可逆矩阵P,使得PTAP,PTBP都是对角矩阵; (2)当|ε|充分小时,A+εB仍是正定矩阵.
设A,B是两个n阶实对称矩阵,并且A正定.证明: (1)存在可逆矩阵P,使得PTAP,PTBP都是对角矩阵; (2)当|ε|充分小时,A+εB仍是正定矩阵.
admin
2019-03-12
60
问题
设A,B是两个n阶实对称矩阵,并且A正定.证明:
(1)存在可逆矩阵P,使得P
T
AP,P
T
BP都是对角矩阵;
(2)当|ε|充分小时,A+εB仍是正定矩阵.
选项
答案
(1)因为A正定,所以存在实可逆矩阵P
1
,使得P
1
T
AP
1
=E.作B
1
=P
1
T
BP
1
,则B
1
仍是实对称矩阵,从而存在正交矩阵Q,使得Q
T
B
1
Q是对角矩阵.令P=P
1
Q,则 P
T
AP=Q
T
P
1
T
AP
1
Q=E,P
T
BP=Q
T
P
1
T
BP
1
Q=Q
T
B
t
Q.因此P即所求. (2)设对(1)中求得的可逆矩阵P,对角矩阵P
T
BP对角线上的元素依次为λ
1
,λ
3
,…,λ
n
,记 M=max{|λ
1
|,|λ
2
|,…,|λ
n
|}. 则当|ε|<1/M时,E+εP
T
BP仍是实对角矩阵,且对角线上元素1+ελ
i
>0,i=1,2,…,n.于是E+εP
T
BP正定,P
T
(A+εB)P=E+εP
T
BP,因此A+εB也正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/20P4777K
0
考研数学三
相关试题推荐
证明推广的积分中值定理:设F(x)与G(x)都是区间[a,b]上的连续函数,且G(x)≥0,G(x)0,则至少存在一点ξ∈[a,b]使得∫abF(x)G(x)dx=F(ξ)∫abG(x)dx.
设函数f(x,y)=计算二重积分其中D={(x,y)|x2+(y—1)2≤1}.
二阶微分方程y"+y=10e2x满足条件y(0)=0,y’(0)=1的特解是y=________.
设f(x)是连续且单调递增的奇函数,设F(x)=∫0x(2u-x)f(x-u)du,则F(x)是()
设A为m×n矩阵,B为n×m矩阵,若矩阵AB可逆,则下列说法中正确的是()
已知随机变量X,Y均服从正态分布N(μ,σ2),且P{max(X,Y)≥μ}=a(0<a<1),则P{min(X,Y)<μ}=()
设已知线性方程组Ax=b存在两个不同的解。(Ⅰ)求λ,a;(Ⅱ)求方程组Ax=b的通解。
如果用X,Y分别表示将一枚硬币连掷8次正反面出现的次数,则t的一元二次方程t2+Xt+Y=0有重根的概率是________。
设随机变量X服从正态分布N(μ,σ2),已知P{X≤2}=0.062,P{X≥9}=0.025,则概率P{|X|≤4}=________。(Ф(1.54)=0.938,Ф(1.96)=0.975)
设三阶矩阵A的特征值为2,一2,1,B=A2一A+E,其中E为三阶单位矩阵,则行列式|B|=__________。
随机试题
1967年,老一辈革命家与中央文革小组错误做法进行的抗争被诬称为()
试述膀胱的形态。
产生“薄厥”的病因,多是
动物小肠的黏膜上皮为()。
下列选项中,关于尖锐湿疣的叙述,错误的是
A.红丝疔B.失荣C.漆疮D.水火烫伤E.酒渣鼻
债的民事法律关系中,不包括的要素是()。
垃圾填埋场污染防治措施的主要内容包括()。
光脑,人们也许还陌生,但制造光脑的尝试,科技界早在20世纪50年代就开始了,直到80年代中后期,才可以说有了决定意义的突破。20世纪90年代中期,世界上有一台光脑已由欧共体的英国、法国、比利时、德国、意大利等国的70多名科学家研制成功,其运算速度比电脑快1
一水池装有甲、乙、丙三个进水管.单独开放甲管,45小时可以注满全池;单独开放乙管,60小时可注满;单独开放丙管,90小时可注满.若三管一齐开放,注满水池需()小时.
最新回复
(
0
)