首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2006年试题,二)设f(x,y)与φ(x,y)均为可微函数,且φ(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( ).
(2006年试题,二)设f(x,y)与φ(x,y)均为可微函数,且φ(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( ).
admin
2013-12-18
123
问题
(2006年试题,二)设f(x,y)与φ(x,y)均为可微函数,且φ(x,y)≠0.已知(x
0
,y
0
)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( ).
选项
A、若f
’
(x
0
,y
0
)=0,则f
y
’
(x
0
,y
0
)=0
B、若f
’
(x
0
,y
0
)=0,则f
y
’
(x
0
,y
0
)≠0
C、若f
’
(x
0
,y
0
)≠0,则f
y
’
(x
0
,y
0
)=0
D、若f
’
(x
0
,y
0
)≠0,则f
y
’
(x
0
,y
0
)≠0
答案
D
解析
用拉格朗日乘数法判断.令F(戈,y,λ)=f(x,y)+λφ(x,y),则(x
0
,y
0
)满足
若f
x
’
(x
0
,y
0
)=0,由(1)式→λ或φ
x
(x
0
,y
0
)=0,而当λ=0时,由(2)式得f
y
’
(x
0
;y
0
)=0;当λ≠0时,由(2)式及φ
y
’
(x
0
,y
0
)≠0→f
y
’
(x
0
,y
0
)≠0.所以排除A,B.若f
x
’
(x
0
,y
0
)≠0,则由(1)式λ→0,再由(2)式及φ
y
’
(x
0
,y
0
)≠0→f
y
’
(x
0
,y
0
)≠0,即f
x
’
(x
0
,y
0
)≠0时,f
y
’
(x
0
,y
0
)≠0.故选D.
转载请注明原文地址:https://kaotiyun.com/show/2134777K
0
考研数学二
相关试题推荐
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数。试问:当a1,a2,…,an满足条件时,二次型f(x1,x2,
[2004年]设n阶矩阵A与B等价,则必有().
[2016年]已知矩阵设三阶矩阵B=[α1,α2,α3]满足B2=BA,记B100=(β1,β2,β3),试将(β1,β2,β3)
(2002年)(1)验证函数满足微分方程y’’+y’+y=ex(2)利用(1)的结果求幂级数的和函数.
(2011年)已知当x→0时,函数f(x)=3sinx—sin3x与cxk是等价无穷小,则()
[2010年]设存在正交矩阵Q使QTAQ为对角矩阵.若Q的第1列为求a,Q.
设四阶矩阵A=(aij)不可逆,a12的代数余子式A12≠0,a1,a2,a3,a4为矩阵A的列向量组,A*为A的伴随矩阵,则方程组A*x=0的通解为
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):ATAN=0,必有()
∫sinxdx/(1+sinx).
随机试题
灌注桩混凝土水下灌注时,其混凝土顶面标高至少要比设计标高高出()。
磺基水杨酸比色法测水中含铁量(三价铁离子)时,控制溶液的pH值为()。
在下列题中求各微分方程的通解或特解
肝气郁结型胁痛的主症特点是:瘀血阻络型胁痛的主症特点是:
A.有效性B.共享性C.层次性D.不完全性E.经济性以下分别属于信息的什么特性?时间上要及时、数量上要适当、质量上要准确、内容上要适用
茯苓的加工方法是()。
滑模施工铁路桥墩时,模板高度宜设置为()。
下列不属于银行业金融机构的重组方式的是()。
班主任苏老师发现,承担本班数学教学任务的林老师经常让学生罚站。面对这种情况,苏老师应该()。
根据下表,回答以下问题下列哪类人员2009年网民人数比上年有所减少?()
最新回复
(
0
)