首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2006年试题,二)设f(x,y)与φ(x,y)均为可微函数,且φ(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( ).
(2006年试题,二)设f(x,y)与φ(x,y)均为可微函数,且φ(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( ).
admin
2013-12-18
107
问题
(2006年试题,二)设f(x,y)与φ(x,y)均为可微函数,且φ(x,y)≠0.已知(x
0
,y
0
)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( ).
选项
A、若f
’
(x
0
,y
0
)=0,则f
y
’
(x
0
,y
0
)=0
B、若f
’
(x
0
,y
0
)=0,则f
y
’
(x
0
,y
0
)≠0
C、若f
’
(x
0
,y
0
)≠0,则f
y
’
(x
0
,y
0
)=0
D、若f
’
(x
0
,y
0
)≠0,则f
y
’
(x
0
,y
0
)≠0
答案
D
解析
用拉格朗日乘数法判断.令F(戈,y,λ)=f(x,y)+λφ(x,y),则(x
0
,y
0
)满足
若f
x
’
(x
0
,y
0
)=0,由(1)式→λ或φ
x
(x
0
,y
0
)=0,而当λ=0时,由(2)式得f
y
’
(x
0
;y
0
)=0;当λ≠0时,由(2)式及φ
y
’
(x
0
,y
0
)≠0→f
y
’
(x
0
,y
0
)≠0.所以排除A,B.若f
x
’
(x
0
,y
0
)≠0,则由(1)式λ→0,再由(2)式及φ
y
’
(x
0
,y
0
)≠0→f
y
’
(x
0
,y
0
)≠0,即f
x
’
(x
0
,y
0
)≠0时,f
y
’
(x
0
,y
0
)≠0.故选D.
转载请注明原文地址:https://kaotiyun.com/show/2134777K
0
考研数学二
相关试题推荐
设A,B为n阶矩阵,记r(X)为矩阵X的秩,(XY)表示分块矩阵,则()
[2008年]如图1.3.3.2所示,曲线段方程为y=f(x),函数f(x)在区间[0,a]上有连续导数,则定积分等于().
[2013年]设函数z=z(x,y)由方程(z+y)x=xy确定,则
设矩阵A=,矩阵B=(kE+A)2,其中k为实数,E为单位矩阵。求对角矩阵A,使B与A相似,并求k为何值时,B为正定矩阵。
设其中c1,c2,c3,c4为任意常数,则下列向量组线性相关的是().
(2014年)设函数f(x)具有二阶导数,g(x)=f(0)(1一x)+f(1)x,则在区间[0,1]上()
[2010年]设存在正交矩阵Q使QTAQ为对角矩阵.若Q的第1列为求a,Q.
(88年)已知向量组α1,α2,…,αs(s≥2)线性无关.设β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.试讨论向量组β1,β2,…,βs的线性相关性.
已知方程=k在区间(0,1)内有实根,确定常数k的取值范围.
[2012年]已知函数f(x)满足方程f"(x)+f’(x)-2f(x)=0及f’(x)+f(x)-2ex.(1)求f(x)的表达式;(2)求曲线的拐点.
随机试题
下列有关项目资本金制度的表述中,正确的是()。
以欺骗、贿赂等不正当手段取得工程造价咨询企业资质的,由资质许可机关予以警告,并处1万元以上3万元以下的罚款,申请人( )年内不得再次申请工程造价咨询企业资质。
地基与基础工程应由总监理工程师(建设单位项目负责人)组织()进行工程验收。
下面的描述正确的是()
某税务师对代理企业进行审核时发现,该企业分两次向“某区某会议领导小组办公室”付款合计100万元。经过对该企业负责人询问得知,这是由于2016年在该区举办武术节,区委向辖区内的企业进行了捐赠摊派,该企业将这两笔支出计入了公益救济性捐赠支出,并全额在税前进行了
为了记住“老鼠”“桌子”这两个词,而进行“老鼠正在啃桌子”这样的联想,所运用的学习策略是()。
以下与苏格拉底“产婆术”的实质相一致的教学原则是()
所谓知识经济,是指建立在知识和信息的生产、分配和使用上的经济,是以智力资源的占有、配置以及知识的生产、分配和使用为最重要因素的经济。这段话主要是讲()。
______consciousofmymoralobligationsasacitizen.
Changesinthewaypeoplelivebringaboutchangesinthejobsthattheydo.Moreandmorepeopleliveintownsandcitiesinste
最新回复
(
0
)