首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2006年试题,二)设f(x,y)与φ(x,y)均为可微函数,且φ(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( ).
(2006年试题,二)设f(x,y)与φ(x,y)均为可微函数,且φ(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( ).
admin
2013-12-18
129
问题
(2006年试题,二)设f(x,y)与φ(x,y)均为可微函数,且φ(x,y)≠0.已知(x
0
,y
0
)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( ).
选项
A、若f
’
(x
0
,y
0
)=0,则f
y
’
(x
0
,y
0
)=0
B、若f
’
(x
0
,y
0
)=0,则f
y
’
(x
0
,y
0
)≠0
C、若f
’
(x
0
,y
0
)≠0,则f
y
’
(x
0
,y
0
)=0
D、若f
’
(x
0
,y
0
)≠0,则f
y
’
(x
0
,y
0
)≠0
答案
D
解析
用拉格朗日乘数法判断.令F(戈,y,λ)=f(x,y)+λφ(x,y),则(x
0
,y
0
)满足
若f
x
’
(x
0
,y
0
)=0,由(1)式→λ或φ
x
(x
0
,y
0
)=0,而当λ=0时,由(2)式得f
y
’
(x
0
;y
0
)=0;当λ≠0时,由(2)式及φ
y
’
(x
0
,y
0
)≠0→f
y
’
(x
0
,y
0
)≠0.所以排除A,B.若f
x
’
(x
0
,y
0
)≠0,则由(1)式λ→0,再由(2)式及φ
y
’
(x
0
,y
0
)≠0→f
y
’
(x
0
,y
0
)≠0,即f
x
’
(x
0
,y
0
)≠0时,f
y
’
(x
0
,y
0
)≠0.故选D.
转载请注明原文地址:https://kaotiyun.com/show/2134777K
0
考研数学二
相关试题推荐
(00年)设函数f(χ)在[0,π]上连续,且∫0πf(χ)dχ=0,∫0πf(χ)cosχdχ=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
(93年)设某产品的成本函数为C=aq2+bq+c,需求函数为q=(d-p).其中C为成本,q为需求量(即产量),p为单价,a,b,c,d,e都是正的常数,且d>b.求:(1)利润最大时的产量及最大利润;(2)需求对价格的弹性;
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是()
(89年)设X为随机变量且EX=μ,DX=σ2.则由切比雪夫不等式,有P{|X-μ|≥3σ}≤_______.
(04年)函数,(u,v)由关系式f[χg(y),y]=χ+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=_______.
(2010年)设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则()
[2016年]已知矩阵求A99;
(2007年)将函数展开成x一1的幂级数,并指出其收敛区间。
证明n阶矩阵相似.
[2012年]求极限
随机试题
根据《水电水利工程施工监理规范》(DL/T5111—2012),监理工程师必须遵守的职业准则包括()。
1998年3月第九届全国人民代表大会第一次会议决定撤销国家教育委员会,恢复_________。
解释下列句中加着重号的词。鵬之背,不知其幾千里也。怒而飛,其翼若垂天之雲。
关于Na+跨细胞膜转运的方式,下列哪项描述正确
尿中含有大量胆红素提示是
确切地说,正确处理医务人员之间关系的意义应除外
监理的服务性指监理人员用自己的知识、技能和经验、信息以及必要的试验、检测手段为建设单位提供( )。
—Iseveryonehere?—Notyet...Look,there______therestofourguests!
许多优秀人才仅因在招聘面试过程中的小小失误就失去了良好的工作机会。尽管面试形式多种多样,主考官的提问五花八门,目前尚无万无一失的应试方法可供应聘者借鉴,但以下要点可以使应聘者提高应试能力,提高成功率。可推知下面的内容是关于()。
在Windows环境下,利用菜单命令删除固定硬盘上的文件与文件夹,实际上是将需要删除的文件与文件夹移动到【 】文件夹中。
最新回复
(
0
)