首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,λ1,λ2,λ3是A的3个不同的特征值,对应的特征向量分别是ξ1,ξ2,ξ3,令β=ξ1﹢ξ2﹢ξ3. 证明:(I)B不是A的特征向量; (Ⅱ)向量组β,Aβ,A2β线性无关.
设A是3阶矩阵,λ1,λ2,λ3是A的3个不同的特征值,对应的特征向量分别是ξ1,ξ2,ξ3,令β=ξ1﹢ξ2﹢ξ3. 证明:(I)B不是A的特征向量; (Ⅱ)向量组β,Aβ,A2β线性无关.
admin
2018-12-21
29
问题
设A是3阶矩阵,λ
1
,λ
2
,λ
3
是A的3个不同的特征值,对应的特征向量分别是ξ
1
,ξ
2
,ξ
3
,令β=ξ
1
﹢ξ
2
﹢ξ
3
.
证明:(I)B不是A的特征向量;
(Ⅱ)向量组β,Aβ,A
2
β线性无关.
选项
答案
(I)已知Aβ=A(ξ
1
﹢ξ
2
﹢ξ
3
)=λ
1
ξ
1
﹢λ
2
ξ
2
﹢λ
3
ξ
3
. 若β是A的特征向量,假设对应的特征值为μ,则有Aβ=μβ=μ(ξ
1
﹢ξ
2
﹢ξ
3
)=λ
1
ξ
1
﹢λ
2
ξ
2
﹢λ
3
ξ
3
, 从而得(μ-λ
1
)ξ
1
﹢(μ-λ
2
)ξ
2
﹢(μ-λ
3
)ξ
3
=0. ξ
1
,ξ
2
,ξ
3
是不同特征值对应的特征向量,由定理知ξ
1
,ξ
2
,ξ
3
线性无关,从而得 λ
1
=λ
2
=λ
3
=μ,这和λ
1
,λ
2
,λ
3
互不相同矛盾.故β=ξ
1
﹢ξ
2
﹢ξ
3
不是A的特征向量. (Ⅱ)法一用线性无关的定义证. 假设存在数k
1
,k
2
,k
3
,使得 k
1
β﹢k
2
Aβ﹢k
3
A
2
β=0. 将β=ξ
1
﹢ξ
2
﹢ξ
3
及Aξ
i
=λ
i
ξ
i
(i=1,2,3)代入上式得k
1
(ξ
1
﹢ξ
2
﹢ξ
3
)﹢k
2
(λ
1
ξ
1
﹢λ
2
ξ
2
﹢λ
3
ξ
3
)﹢k
3
(λ
1
2
ξ
1
﹢λ
2
2
ξ
1
﹢λ
3
2
ξ
3
)=0, 整理得(k
1
﹢k
2
λ
1
﹢k
3
λ
1
2
)ξ
1
﹢(k
1
﹢k
2
λ
2
﹢k
3
λ
2
2
)ξ
2
﹢(k
1
﹢k
2
λ
3
﹢k
3
λ
3
2
)ξ
3
=0. 因ξ
1
,ξ
2
,ξ
3
线性无关,则有 [*] 又λ
i
(i=1,2,3)互不相同,故方程组(*)的系数矩阵的行列式[*]=(λ
3
2-λ
2
)(λ
3
-λ
1
)(λ
2
-λ
1
)≠0, 故方程组(*)仅有零解,即k
1
=k
2
=k
3
=0,所以β,Aβ,A
2
β线性无关. 法二 用秩来证.因 (β,Aβ,A
2
β)=(ξ
1
﹢ξ
2
﹢ξ
3
,λ
1
ξ
1
﹢λ
2
ξ
2
﹢λ
3
ξ
3
,λ
1
2
ξ
1
﹢λ
2
2
ξ
2
﹢λ
3
2
ξ
3
)=(ξ
1
,ξ
2
,ξ
3
)[*](ξ
1
,ξ
2
,ξ
3
)C. 其中|C|=[*]≠0,所以C是可逆矩阵. 故r(β,Aβ,A
2
β)=r(ξ
1
,ξ
2
,ξ
3
)=3.因此β,Aβ,A
2
β线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/2Aj4777K
0
考研数学二
相关试题推荐
(2005年)设函数u(χ,y)=φ(χ+y)+φ(χ-y)+∫χ-yχ+yφ(t)dt,其中函数φ具有二阶导数,φ具有一阶导数,则必有【】
(2010年)(Ⅰ)比较∫01|lnt|[ln(1+t)]ndt与∫01tn|lnt|dt(n=1,2,…)的大小,说明理由;(Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限un.
(2011年)设I=lnsinχdχ,J=lncotχdχ,K=lncosχdχ,则I,J,K的大小关系为【】
(2014年)设A=,E为3阶单位矩阵.(Ⅰ)求方程组Aχ=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
(2000年)函数f(χ)在[0,+∞]上可导,f(0)=1,且满足等式f′(χ)+f(χ)-∫0χf(t)dt(1)求导数f′(χ);(2)证明:当χ≥0时,成立不等式:e-χ≤f(χ)≤1.
(1998年)设y=f(χ)是区间[0,1]上任一非负连续函数.(1)试证存在χ0∈(0,1),使得在区间在区间[0,χ0]上以f(χ0)为高的矩形的面积等于在区间[χ0,1]上以y=f(χ)为曲面的曲边梯形的面积.(2)又设f(χ)在
(2012年)证明:χln(-1<χ<1).
(1993年)设二阶常系数线性微分方程y〞+αy′+βy=γeχ的一个特解为y=e2χ+(1+χ)eχ,试确定常数α、β、γ,并求该方程的通解.
(1987年)求微分方程χ=χ-y满足条件=0的特解.
随机试题
香港、澳门回归祖国以后实行()。
企业合并按照合并企业所涉及的行业分类,可分为【】
差异性发绀见于哪种先天性心脏病
甲公司向乙公司发出报价单,乙公司向甲公司表示愿意订购两套设备,以下说法正确的是()
请简述招标采购的适用范围。
由于内部筹集一般不产生筹资费用,所以内部筹资的资本成本最低。()
下列表达式不正确的有()。
什么是“极点”现象?怎么克服?
邓小平反复强调一定要把“什么是社会主义”和“怎样建设社会主义”这个首要的基本理论问题搞清楚,一方面是为了真正坚持社会主义,另一方面是为了
Students’pressuresometimescomesfromtheirparents.Mostparentsarewell【B1】_______,butsomeofthemaren’tveryhelpfulwi
最新回复
(
0
)