首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型 f(x1,x2,x3)=4x22-3x23+4x1x2-4x1x3+8x2x3. 用正交变换把二次型f化为标准形,并求出相应的正交矩阵.
已知二次型 f(x1,x2,x3)=4x22-3x23+4x1x2-4x1x3+8x2x3. 用正交变换把二次型f化为标准形,并求出相应的正交矩阵.
admin
2021-02-25
55
问题
已知二次型
f(x
1
,x
2
,x
3
)=4x
2
2
-3x
2
3
+4x
1
x
2
-4x
1
x
3
+8x
2
x
3
.
用正交变换把二次型f化为标准形,并求出相应的正交矩阵.
选项
答案
矩阵A的特征多项式为 [*] 由此得矩阵A的特征值为λ
1
=1,λ
2
=6,λ
3
=-6. 于是,二次型f可通过正交变换x=Qy化为标准形 f=y
2
1
+6y
2
2
-6y
2
3
. 对于特征值λ
1
=1,由于 [*] 故对应于特征值λ
1
=1的特征向量可取为ξ
1
=(2,0,-1)
T
. 类似地,对应于特征值λ
2
=6,λ
3
=-6的特征向量可分别取为ξ
2
=(1,5,2)
T
,ξ
3
=(1,-1,2)
T
. 因为A是实对称矩阵,且λ
1
,λ
2
,λ
3
互异,故x
1
,x
2
,x
3
构成正交向量组,将其单位化得 [*] 于是,所求的正交矩阵为 [*] 故对二次型f作正交变换 [*] 则可将f化为标准形 f=y
2
1
+6y
2
2
-6y
2
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/2e84777K
0
考研数学二
相关试题推荐
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明:η*,ξ1,…,ξn-r线性无关;
设f(χ)=处处可导,确定常数a,b,并求f′(χ).
已知三角形的周长为2p,将它绕其一边旋转而构成一立体,求使立体体积最大的那个三角形.
已知函数在x=1处可导,求曲线y=f(x)在点(1,f(1))处的切线方程和法线方程.
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0)。当L与直线y=ax所围成平面图形的面积为时,确定a的值。
已知三元二次型XTAX经正交变换化为2y12一y22一y32,又知矩阵B满足矩阵方程其中α=[1,1,一1]T,A*为A的伴随矩阵,求二次型XTBX的表达式.
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫ab(x)dx=1.证明:∫abf(x)φ(c)dx≥f[∫abxφ(x)dx].
直线y=x将椭圆x2+3y2=6y分为两块,设小块面积为A,大块面积为B,求的值.
(1993年)设平面图形A由χ2+y2≤2χ与y≥χ所确定,求图形A绕直线χ=2旋转一周所得旋转体的体积。
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=-2,则行列式|-A1-2A2,2A2+3A3,-3A3+2A1|=_______.
随机试题
某商业建筑,东西长100m,南北宽60m,建筑高度26m,室外消火栓设计流量为40L/s,南侧布置消防扑救面。沿该建筑南侧消防扑救面设置的室外消火栓数量,不宜少于()个。
患者因受精神刺激突发二便失禁,骨酸痿厥或遗精。其病机是患者因受精神刺激而气逆喘息,面红口赤,呕血,昏厥卒倒。其病机是
下列有抗原性的纤维蛋白溶解药是
外加剂储存时应当至少离地的高度和离墙的距离分别是()。
下列各项中,可能与“应付职工薪酬”科目贷方对应的有()。
沂源:苹果:水果
某种商品有小箱和大箱两种包装,一大箱这种商品有400件,张和王同时开始制造这种商品,制造一小箱和一大箱这种商品后,张比王多做50件。如果王此时的效率提高100%,并与张再共同制造一大箱这种商品,则王制造的总件数比张多50件。问一小箱这种商品有多少件:
下列成语及其出处的对应关系错误的是()。
Manhasbeenstoringupusefulknowledgeabouthimselfandtheuniverseattheratewhichhasbeenspiralingupwardfor10,000y
【B1】【B8】
最新回复
(
0
)