设X1,X2,…,Xn是来自总体X的简单随机样本,且X的概率分布为131,其中0<θ<1,分别用n1,n2,n3表示X1,X2,…,Xn中出现1,2,4的次数,试求 (Ⅰ)未知参数θ的最大似然估计量; (Ⅱ)未知参数θ的矩估计量; (Ⅲ)当样本值为1,2,

admin2019-01-25  37

问题 设X1,X2,…,Xn是来自总体X的简单随机样本,且X的概率分布为131,其中0<θ<1,分别用n1,n2,n3表示X1,X2,…,Xn中出现1,2,4的次数,试求
(Ⅰ)未知参数θ的最大似然估计量;
(Ⅱ)未知参数θ的矩估计量;
(Ⅲ)当样本值为1,2,1,4,5,4,1,5时的最大似然估计值和矩估计值。

选项

答案(Ⅰ)根据已知,样本中出现1,2,4,5的次数分别为n1,n2,n3,n-n1-n2-n3,则似然函数为 L(θ)=(1-θ)=(1-θ)2n1[θ(1-θ)]n2[θ(1-θ)]n3θ2(n-n1-n2-n3), 两边取对数 ln L(θ)=In|(1-θ)2n1[θ(1-θ)]n2[θ(1-θ)]n3θ2(n-n1-n2-n3)} =(2n1+n2+n3)In(1-θ)+(2n-2n1-n2-n3)In θ, 两边同时对θ求导 [*] 解得θ的最大似然估计量为[*]。 (Ⅱ)总体X的数学期望为 E(X)=1×(1-θ)2+2[θ(1-θ)]+4[θ(1-θ)]+5θ2=1+4θ, 因此可得θ的矩估计量为[*]。 (Ⅲ)利用上面的两个估计量公式,当样本值为1,2,1,4,5,4,1,5时,θ的最大似然估计值为 [*] θ的矩估计值为 [*]

解析 本题考查最大似然估计和矩估计。因为n1,n2,n3,表示X1,X2,…,Xn中出现1,2,4的次数,因此5出现的次数即为n-n1-n2-n3。再根据最大似然估计量的求解步骤构造似然函数,取对数,求导。矩估计量与各个随机变量出现的次数无关,根据X的概率分布计算期望,求矩估计量。
转载请注明原文地址:https://kaotiyun.com/show/2hP4777K
0

最新回复(0)