设向量组α1=(1,1,1,3)T,α2=(一1,一3,5,1)T,α3=(3,2,一1,p+2)T,α4=(一2,一6,10,p)T,(1)p为何值时,该向量组线性无关?并在此时将α=(4,l,6,10)T用α1,α2,α3,α4

admin2016-01-11  28

问题 设向量组α1=(1,1,1,3)T,α2=(一1,一3,5,1)T,α3=(3,2,一1,p+2)T,α4=(一2,一6,10,p)T,(1)p为何值时,该向量组线性无关?并在此时将α=(4,l,6,10)T用α1234
选项

答案[*] (2)p=2时,向量组α1234线性相关,其秩为3,并且α123(或α134)为其—个极大线性无关组.

解析 本题综合考查向量组的极大线性无关组和秩的求法,解题时常将向量组转化为矩阵,再作初等行变换解答.要求考生掌握向量组线性相关性、向量线性表示,向量组极大线性无关组和秩的概念.
转载请注明原文地址:https://kaotiyun.com/show/2q34777K
0

最新回复(0)