首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[1,+∞)可导,[xf(x)]≤-kf(x)(x>1),在(1,+∞)的子区间上不恒等,又f(1)≤M,其中k,M为常数,求证:f(x)<(x>1).
设f(x)在[1,+∞)可导,[xf(x)]≤-kf(x)(x>1),在(1,+∞)的子区间上不恒等,又f(1)≤M,其中k,M为常数,求证:f(x)<(x>1).
admin
2018-06-27
57
问题
设f(x)在[1,+∞)可导,
[xf(x)]≤-kf(x)(x>1),在(1,+∞)的
子区间上不恒等,又f(1)≤M,其中k,M为常数,求证:f(x)<
(x>1).
选项
答案
已知xf’(x)+(k+1)f(x)≤0(x>1),在(1,+∞)[*]子区间上不恒为零,要证f(x)x
k+1
<M(x>1).令F(x)=f(x)x
k+1
[*]F’(x)=x
k+1
f’(x)+(k+1)x
k
f(x)=x
k
[xf’(x)+(k+1)f(x)]≤0(x>1),在(1,+∞)[*]子区间上不恒为零,又F(x)在[1,+∞)连续[*]F(x)在[1,+∞)单调下降[*]F(x)<F(1)=f(1)≤M (x>1).
解析
转载请注明原文地址:https://kaotiyun.com/show/xak4777K
0
考研数学二
相关试题推荐
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A的特征向量;
设函数f(x)在[a,+∞)内二阶可导且f’’(x)a,f’(b)>0,f’(b)0,则方程f(x)=0在[a,+∞)内有且仅有一个实根.
设f(x)在(一∞,+∞)是连续函数,求y’’+y’=f(x)的通解.
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+Py’+qy=f(x)的三个特解.求这个方程和它的通解:
设函数f(x),g(x)在区间[0,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明:
计算定积分(常数(a>0).
设ξ1=[1,一2,3,2]T,ξ2=[2,0,5,一2]T是齐次线性方程组Ax=0的基础解系,则下列向量中是齐次线性方程组Ax=0的解向量的是()
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系,证明:方程组Ax=b的任一解均可由η,η+ξ,η+ξ1,η+ξn-r线性表出.
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
求椭圆所围成的公共部分的面积.
随机试题
既能凉血止血,又能解毒、敛疮的药物是
交磁电机扩大机有多个控制绕组,其匝数、额定电流各有不同,因此额定安匝数也不相同。()
关于体温的描述下列说法错误的是
桥梁施工测量方法有:控制测量、墩台定位及其轴线测设、桥梁结构细部放样、变形观测和竣工测量等。对于小型桥一般不进行()。
会计软件应当具有对计算机内会计数据进行查询的功能。数据查询功能满足国家统一的会计制度规定的内容和格式要求。()
国际货币基金协定第30条D款还规定实现经常项目下可兑换应对()的对外支付不加限制。
以下关于经济规律的说法错误的是()。
张某家住闹市区,人口密集交通便利,打算在自家的小平房开一个小卖部,便向工商行政管理部门申请营业许可。该营业许可属于()性质的行政许可。
已知平面区域D={(x,y)|x2+y2≤2y},计算二重积分∫(x+1)2dxdy.
A、Thelongerournapis,themoreenergywewillget.B、A20-minutenapwillhelptorestoreourenergy.C、Ashort-timenapdoes
最新回复
(
0
)