首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[1,+∞)可导,[xf(x)]≤-kf(x)(x>1),在(1,+∞)的子区间上不恒等,又f(1)≤M,其中k,M为常数,求证:f(x)<(x>1).
设f(x)在[1,+∞)可导,[xf(x)]≤-kf(x)(x>1),在(1,+∞)的子区间上不恒等,又f(1)≤M,其中k,M为常数,求证:f(x)<(x>1).
admin
2018-06-27
38
问题
设f(x)在[1,+∞)可导,
[xf(x)]≤-kf(x)(x>1),在(1,+∞)的
子区间上不恒等,又f(1)≤M,其中k,M为常数,求证:f(x)<
(x>1).
选项
答案
已知xf’(x)+(k+1)f(x)≤0(x>1),在(1,+∞)[*]子区间上不恒为零,要证f(x)x
k+1
<M(x>1).令F(x)=f(x)x
k+1
[*]F’(x)=x
k+1
f’(x)+(k+1)x
k
f(x)=x
k
[xf’(x)+(k+1)f(x)]≤0(x>1),在(1,+∞)[*]子区间上不恒为零,又F(x)在[1,+∞)连续[*]F(x)在[1,+∞)单调下降[*]F(x)<F(1)=f(1)≤M (x>1).
解析
转载请注明原文地址:https://kaotiyun.com/show/xak4777K
0
考研数学二
相关试题推荐
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A*一6E的秩.
设xOy平面第一象限中有曲线F:y=y(x),过点y’(x)>0.M(x,y)为F上任意一点,满足:弧段的长度与点M处厂的切线在x轴上的截距之差为求曲线F的表达式.
计算二重积分其中D={(x,y)|x2+y2≤x+y}.
已知4维列向量α1,α2,α3线性无关,若βi(i=1,2,3,4)非零且与α1,α2,α3均正交,则秩r(β1,β2,β3,β4)=
已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2—2α3,Aα2=一α2,Aα3=8α1+6α2—5α2.求秩r(A+E).
已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2—2α3,Aα2=一α2,Aα3=8α1+6α2—5α2.求A的特征值和特征向量;
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+Py’+qy=f(x)的三个特解.设y=y(x)是该方程满足y(0)=0,y’(0)=0的特解,求
设A是3阶非零矩阵,满足A2=0,则线性非齐次方程组Ax=b(易≠0)的线性无关解向量的个数是_______.
设b为常数.设L与l从x=1延伸到x→+∞之间的图形的面积八为有限值,求b及A的值.
设线性方程组已知(1,-1,1,-1)T是该方程组的一个解.试求:方程组的全部解,并用对应的齐次方程组的基础解系表示全部解;
随机试题
HowtoWriteaBookReviewI.ThedefinitionofabookreviewA.adescriptiveandcriticalorevaluativeaccountofaboo
TimePatterninAmerica[A]SusanAnthonyhasaneight-to-fivejobwithtwo15-minutecoffeebreaks,aone-hourlunchbrea
在路口这个位置时可以加速通过路口。
极限()
患者性情急躁易怒,胸胁胀满,口苦而干,或头痛,目赤,耳鸣,或嘈杂吞酸,大便秘结,舌质红,苔黄,脉弦数。治当
体检中最可能的发现是下列哪项检查对诊断最有帮助
ABC三国均为世界贸易组织成员.B国认为甲的贸易措施违反了最惠国待遇原则,A国认为C国限制其在D设立的银行的措施违反了最惠国待遇原则.B国和A国分别决定通过WTO争端解决机制解决争议。下列有关最惠国待遇的说法中正确的有哪几项?()
《旅游法》最大的一个聚焦点就是(),保护旅游者合法权益。
根据我国相关法律规定,劳动者享有的权利包括:
如果变量X是一个正的实数,保留两位小数、将千分位四舍五入的表达式是()。
最新回复
(
0
)