首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2恒
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2恒
admin
2018-09-25
43
问题
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S
1
,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S
2
,并设2S
1
-S
2
恒为1,求此曲线y=y(x)的方程.
选项
答案
曲线y=y(x)上点P(x,y)处的切线方程为Y-y=y’.(X-x). 它与x轴的交点为[*]由于y’(x)>0,y(0)=1,从而y(x)>0,于是 [*] 又S
2
=∫
0
x
y(t)dt,由条件2S
1
-S
2
=1知 [*] 两边对x求导并化简得yy’’=(y’)
2
.令p=y’,则上述方程可化为 [*] 从而 [*] 于是y=e
C
1
x+C
2
. 注意到y(0)=1,并由(*)式得y’(0)=1.由此可得C
1
=1,C
2
=0,故所求曲线的方程是y=e
x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/3Sg4777K
0
考研数学一
相关试题推荐
求星形线的质心,其中a>0为常数.
设随机变量X的概率密度为f(x),已知D(X)=1,而随机变量Y的概率密度为f(-y),且ρXY=,记Z=X+Y,求E(Z),D(Z).
设某一设备由三大部件构成,设备运转时,各部件需调整的概率分别为0.1,0.2,0.3,若各部件的状态相互独立,求同时需调整的部件数X的分布函数.
设F1(x)与F2(x)分别是随机变量X1与X2的分布函数,为使F(x)=aF1(x)一bF2(x)是某一随机变量的分布函数,在下列给定的各组数值中应取
设有级数U:vn,求证:(Ⅰ)若U,V均绝对收敛,则(un+vn)绝对收敛;(Ⅱ)若U绝对收敛,V条件收敛,则(un+vn)条件收敛.
证明:与基础解系等价的线性无关的向量组也是基础解系.
设f(x)为连续函数Ω=((x,y,z)|x2+y2+z2≤t2,z≥0},∑为Ω的表面,Dxy为Ω在xOy平面上的投影区域,L为Dxy的边界曲线,当t>0时有求f(x).
设α为实n维非零列向量,αT表示α的转置.(1)证明:为对称的正交矩阵;(2)若α=(1,2,一2)T,试求出矩阵A;(3)若β为n维列向量,试证明:Aβ=β一(bc)α,其中,b、c为实常数.
设则有().
(1991年)设则
随机试题
角色扮演法是一种通过行为模仿或________来影响个体心理过程的方法。
在孕妇腹壁上听诊,与母体心率相一致的音响是
关于下列几起因垄断行为引发的民事纠纷案件的管辖的说法正确的是:()
具有同质风险的消费者购买同类型的保险体现出保险()的基本职能。
在普通螺旋机构中,螺杆(或螺母)旋转一周,螺母(或螺杆)移动一个导程s。因此,不管是螺母位移或螺杆位移,其位移量L与螺旋传动时的转速n之间的关系为()。(t为时间)
Motherhoodmaymakewomensmarterandmayhelppreventdementia(痴呆)inoldagebybathingthebraininprotectivehormones(荷尔蒙),u
对声音的方位定向不起作用的是
已知IP地址10.10.25.33和10.10.25.34、10.10.25.65和10.10.25.66预留给RG与其它路由器互联,请根据下图所示网络结构回答下列问题。采用一种设备能够对该网络10.10.33.128/25提供如下的保护措施:数据包
Liberal(自由)educationisbecomingthetaskofteachers.Itis【C1】______notonlytoteachandlearnknowledge,butalsotodevel
ThomasMalthuspublishedhisEssayonthePrincipleofPopulationalmost200yearsago.Eversincethen,forecastershavebeing
最新回复
(
0
)