首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组 与方程 x1+2x2+x3=a-1 (Ⅱ) 有公共解,求a的值及所有公共解.
设线性方程组 与方程 x1+2x2+x3=a-1 (Ⅱ) 有公共解,求a的值及所有公共解.
admin
2019-12-26
65
问题
设线性方程组
与方程
x
1
+2x
2
+x
3
=a-1 (Ⅱ)
有公共解,求a的值及所有公共解.
选项
答案
【解法1】 将方程组(I)与(Ⅱ)联立得 [*] 则方程组(Ⅲ)的解便是方程组(I)与(Ⅱ)的公共解.对方程组(Ⅲ)的增广矩阵[*]施行初等行变换: [*] 由于方程组(Ⅲ)有解,故其系数矩阵的秩等于增广矩阵[*]的秩.于是得(a-1)(a-2)=0,即a=1或a=2. 当a=1时, [*] 由此得方程组(Ⅲ)亦即方程组(I)与(Ⅱ)的公共解为 [*] 其中k为任意常数. 当a=2时, [*] 由此知方程组(Ⅲ)亦即方程组(I)与(Ⅱ)的公共解为 x=(0,1,-1)
T
. 【解法2】 先求方程组(I)的解.其系数行列式为 [*] 当a≠1且a≠2时,系数行列式不等于零,于是齐次方程组(I)只有零解.但零向量x=(0,0,0)
T
显然不是方程(Ⅱ)的解(a≠1且a≠2). 当a=1时,对方程组(I)的系数矩阵施行初等行变换: [*] 因此方程组(I)的通解为x=k(-1,0,1)
T
(k为任意常数).而且此解也满足方程(Ⅱ).总之,此时方程组(I)与(Ⅱ)的所有公共解为 [*] 其中k为任意常数. 当a=2时,对方程组(I)的系数矩阵施行初等行变换: [*] 此时方程组(I)的通解为x=k(0,-1,1)
T
(k为任意常数).将此解代入方程(Ⅱ),得k=-1,所以方程组(I)与(Ⅱ)的所有公共解为 [*] 综上,a=1和a=2.
解析
转载请注明原文地址:https://kaotiyun.com/show/3TD4777K
0
考研数学三
相关试题推荐
已知矩阵A=有两个线性无关的特征向量,则a=______.
与α1=[1,2,3,-1]T,α2=[0,1,1,2]T,α3=[2,1,3,0]T都正交的单位向量是_________.
设总体X的密度函数为(X1,X2,…,Xn)为来自总体X的简单随机样本.求θ的矩估计量;
微分方程y’’一2y’+2y=ex的通解为______.
已知α=(1,2,3),β=(1,1/2,1/3),矩阵A=αTβ,n为正整数,则An=_______.
计算二重积分,其中D是由曲线和直线y=一x围成的区域.
质量为1g的质点受外力作用作直线运动,外力和时间成正比,和质点的运动速度成反比,在t=10s时,速度等于50cm/s.外力为39.2cm/s2,问运动开始1min后的速度是多少?
已知某零件的横截面是一个圆,对横截面的直径进行测量,其值在区间(1,2)上服从均匀分布,则横截面面积的数学期望为________,方差为________.
已知m个向量α1,αm线性相关,但其中任意m一1个向量都线性无关,证明:(Ⅰ)如果等式k1α1+…+kmαm=0成立,则系数后k1,…,km或者全为零,或者全不为零;(Ⅱ)如果等式k1α1+…+kmαm=0和等式l1α1+…+lmαm=0都成立,则其中
设A为三阶方阵,a为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α,证明:矩阵B=[α,Aα,A4α]可逆.
随机试题
低脂肪膳食适应症_______。
4层螺旋CT的图像重建预处理的基本方法是
胃肠黏膜因炎症等病变致血浆、黏液渗出所致的腹泻称为
下列哪项不是肩关节正位影像的标准显示结构
A公司于4月5日从证券市场上购进B公司发行在外的股票200万股作为交易性金融资产,每股支付价款4元(含已宣告但尚未发放的现金股利0.5元),另支付相关费用3万元。A公司交易性金融资产取得时的入账价值为()万元。
根据《民办非企业单位登记管理暂行条例》,对民办非企业单位的违规行为,登记管理机关可以做出的行政处罚包括()。
2014年()会议是继2001年在上海后重回中国,于11月中旬在北京召开,包括领导人非正式会议、部长级会议、高官会等系列会议。(济宁兖州)
我国的自然资源主要包括()。
现在全球总需求不振,我国低成本比较优势也发生了转化。在此背景下,作为外向型企业应该()。①加紧培育新的比较优势②加快研究国际贸易规则③不断提高自主创新能力④寻求更好的降低成本的策略
关于ADSL技术的描述中,错误的是()。
最新回复
(
0
)