首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上可导,且f’+(a)与f’-(b)反号,证明:存在ξ∈(a,b)使得f’(ξ)=0.
设f(x)在[a,b]上可导,且f’+(a)与f’-(b)反号,证明:存在ξ∈(a,b)使得f’(ξ)=0.
admin
2018-06-27
30
问题
设f(x)在[a,b]上可导,且f’
+
(a)与f’
-
(b)反号,证明:存在ξ∈(a,b)使得f’(ξ)=0.
选项
答案
由极限的不等式性质和题设知,存在δ>0使得a+δ<b-δ,且 [*] 于是f(a+δ)>f(a),f(b-δ)>f(b). 这表明f(x)在[a,b]上的最大值必在(a,b)内某点取到,即存在ξ∈(a,b)使得f(ξ)=[*].由费马定理知f’(ξ)=0.
解析
因f(x)在[a,b]上可导,因而必连续,故存在最大值和最小值.如能证明最大值或最小值在(a,b)内取得,那么这些点的导数值必为零,从而证明了命题.注意,由于题设条件中未假设f’(x)连续,所以不能用连续函数的介值定理来证明.证明时不妨设f’
+
(a)>0且f’
-
(b)<0.
转载请注明原文地址:https://kaotiyun.com/show/3Zk4777K
0
考研数学二
相关试题推荐
设D={(x,y)|x2+y2≤1},证明不等式
设D={(x,y)|x2+y2≤1},将二重积分化为定积分;
已知当x→0时f(x)=tanx一ln(1+sinx)与kxn是等价无穷小量,则
设且B=P-1AP.求A100.
过第一象限中椭圆上的点(ξ,η)作该椭圆的切线,使该切线与两坐标轴的正向围成的三角形的面积为最小,求点(ξ,η)的坐标及该三角形的面积.
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系,证明:方程组Ax=b的任一解均可由η,η+ξ,η+ξ1,η+ξn-r线性表出.
设f(x)在x=a处存在二阶导数,则=__________.
设位于第一象限的曲线y=f(x)过点,其上任一点P(x,y)处的法线与y轴的交点为Q,且线段PQ被x轴平分.(1)求曲线y=f(x)的方程;(2)已知曲线y=sinx在[0,π]上的弧长为l,试用,表示曲线y=f(x)的弧长s.
设半径为1的球正好有一半沉入水中,球的比重为1,现将球从水中取出,问要作多少功?(假设在球从水中取出的过程中水面的高度不变.)
设常数k>0,函数f(x)=lnx一+k在(0,+∞)内零点个数为
随机试题
设有定义:struct{intn;floatx;}s[2],m[2]={{10,2.8},{0,0.0}};则以下赋值语句中正确的是()。
______inyourposition,Iwouldhelphim.
十二指肠溃疡常见于
关于ANUG,哪一项描述是不正确的
含咖啡因的中成药()。
以下哪些地基处理方法适用于提高饱和软土地基承载力?()
()是政府通过调节利率来调节总需求水平,以促进充分就业、稳定物价和经济增长的一种宏观经济管理对策。
()由中国近代著名教育家、出版家陆费逵动议编纂,至今已有整整100年历史,是我围唯一一部以字代词,集字典、语文词典和百科辞典等功能于一体的大型综合性图书。
一、注意事项 1.申论考试,与传统作文考试不同,是对分析驾驭材料的能力、解决问题能力、语言表达能力的测试。 2.作答参考时限:阅读材料40分钟,作答110分钟。 3.仔细阅读给定的材料,按照后面提出的“申论要求”依次作答。二、给定材料 因
Socialevilswerefundamentallycausedby______inequality.
最新回复
(
0
)