首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn-r+1是它的n—r+1个线性无关的解。试证它的任一解可表示为 x=k1η1+…+kn-r+1ηn-r+1,其中k1+…+kn-r+1=1。
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn-r+1是它的n—r+1个线性无关的解。试证它的任一解可表示为 x=k1η1+…+kn-r+1ηn-r+1,其中k1+…+kn-r+1=1。
admin
2019-08-12
83
问题
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η
1
,…,η
n-r+1
是它的n—r+1个线性无关的解。试证它的任一解可表示为
x=k
1
η
1
+…+k
n-r+1
η
n-r+1
,其中k
1
+…+k
n-r+1
=1。
选项
答案
设x为Ax=b的任一解,由题设知η
1
,η
2
,…,η
n-r+1
线性无关且均为Ax=b的解。 取ξ
1
=η
2
一η
1
,ξ
2
=η
3
一η
1
,…,η
n-r
=η
n-r+1
一η
1
,根据线性方程组解的结构,它们均为对应齐次方程Ax=0的解。 下面用反证法证: 设ξ
1
,ξ
2
,…,ξ
n-r
线性相关,则存在不全为零的数l
1
,l
2
,…,l
n-r
,使得 l
1
ξ
1
+l
2
ξ
2
+…+l
n-r
ξ
n-r
=0, 即l
1
(η
2
一η
1
)+l
2
(η
3
一η
1
)+…+l
n-r
(η
n-r+1
一η
1
)=0, 也即一(l
1
+l
2
+…+l
n-r
)η
1
+l
1
η
2
+l
2
η
3
+…+l
n-r
η
n-r+1
=0。 由η
1
,η
2
,…,η
n-r+1
线性无关知 一(l
1
+l
2
+…+l
n-r
)=l
1
=l
2
=…=l
n-r
=0, 这与l
1
,l
2
,…,l
n-r
不全为零矛盾,故假设不成立。因此ξ
1
,ξ
2
,…,ξ
n-r
线性无关,是Ax=0的基础解系。 由于x,η
1
均为Ax=b的解,所以x一η
1
为Ax=0的解,因此x一η
1
可由ξ
1
,ξ
2
,…,ξ
n-r
线性表示,设 x一η
1
=k
2
ξ
1
+k
3
ξ
2
+…+k
n-r+1
ξ
n-r
=k
2
(η
2
一η
1
)+k
3
(η
3
一η
1
)+…+k
n-r+1
(η
n-r+1
一η
1
), 则x=η
1
(1一k
2
一k
3
一…一k
n-r+1
)+k
2
η
2
+k
3
η
3
+…+k
n-r+1
η
n-r+1
, 令k
1
=1一k
2
一k
3
一…一k
n-r+1
,则k
1
+k
2
+k
3
+…+k
n-r+1
=1,从而 x=k
1
η
1
+k
2
η
2
+…+k
n-r+1
恒成立。
解析
转载请注明原文地址:https://kaotiyun.com/show/3eN4777K
0
考研数学二
相关试题推荐
把y看作自变量,x为因变量,变换方程=x.
An×n(α1,α2,…,αn),Bn×n=(α1+α2,α2+α3,…,αn+α1),当r(A)=n时,方程组BX=0是否有非零解?
设f(x)在闭区间[一1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在[一1,1]内存在ξ,使得f"(ξ)=3.
已知f(x)=,求f’(1).
已知0是A=的特征值,求a和A的其他特征值及线性无关的特征向量.
已知n阶方阵A满足矩阵方程A2一3A一2E=O.证明:A可逆,并求出其逆矩阵A-1.
设,B=U-1A*U.求B+2E的特征值和特征向量.
设A是3阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量,证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
已知线性方程组(I)及线性方程组(Ⅱ)的基础解系ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T.求方程组(Ⅰ)和(Ⅱ)的公共解.
已知齐次线性方程组同解,求a,b,c的值.
随机试题
夏,楚子使屈完如師。師退,次于召陵。齊侯陳諸侯之師,舆屈完乘而觀之。齊侯曰:“豈不榖是爲?先君之好是繼!舆不榖同好,如何?”對曰:“君惠徼福於敝邑之社稷,辱收寡君,寡君之願也。”齊侯曰:“以此衆戰,誰能禦之!以此攻城,何城不克!”對曰:“君若以德綏諸侯,
简述完整制的优缺点。
A.轻度昏迷B.中度昏迷C.深度昏迷D.嗜睡E.昏睡
产生液气胸的常见病因是胸腔积液并发
专题安全教育培训是指针对某一具体问题进行专门的培训工作。专题安全教育培训工作针对性强,效果比较突出。通常开展的内容有“三新”安全教育培训,法律法规及规章制度培训,事故案例培训,安全知识竞赛、技术比武等。上述提到的“三新”是指()。
对于人工智能来说,这种学习的广度实在是__________,凡是人类社会的东西和事物,都是其学习的对象。但对它未学习过的东西,人工智能就会___________,而且不知道逻辑推理,犯错误和发生事故也在所难免。填入画横线部分最恰当的一项是:
关于国画,以下说法不正确的是:
WhilewesterngovernmentsworryoverthethreatofEbola,amorepervasivebutfarlessharmful【C1】______isspreadingthrought
Peoplethinkingabouttheoriginoflanguageforthefirsttimeusuallyarriveattheconclusionthatitdevelopedgraduallyas
A、Boththemanandthewomanhavenotimetolookatthegift.B、Themancan’timaginewhathisfriendsgetforhim.C、Themana
最新回复
(
0
)