首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)在全平面有连续偏导数,曲线积分∫Lf(x,y)dx+xcosydy在全平面与路径无关,且∫(0,0)(t,t2)f(x,y)dx+xcosydy=t2,求f(x,y).
设f(x,y)在全平面有连续偏导数,曲线积分∫Lf(x,y)dx+xcosydy在全平面与路径无关,且∫(0,0)(t,t2)f(x,y)dx+xcosydy=t2,求f(x,y).
admin
2018-09-25
51
问题
设f(x,y)在全平面有连续偏导数,曲线积分∫
L
f(x,y)dx+xcosydy在全平面与路径无关,且∫
(0,0)
(t,t
2
)
f(x,y)dx+xcosydy=t
2
,求f(x,y).
选项
答案
①∫
L
(x,y)dx+xcosydy在全平面与路径无关 [*] 积分得f(x,y)=siny+C(x). ②求f(x,y)转化为求C(x). 因f(x,y)dx+xcosydy=sinydx+xcosydy+C(x)dx=sinydx+xdsiny+[*] =d[xsiny+∫
0
x
C(s)ds], 则有 [xsiny+∫
0
x
C(s)ds]|
(0,0)
(t,t
2
)
=t
2
, 即tsin t
2
+∫
0
t
C(s)ds=t
2
=>sint
2
+2t
2
cost
2
+C(t)=2t,因此 f(x,y)=siny+2x-sinx
2
-2x
2
cosx
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/3qg4777K
0
考研数学一
相关试题推荐
设有曲面S:=1,平面∏:2x+2y+z+5=0.(Ⅰ)在曲面S上求平行于平面∏的切平面方程;(Ⅱ)求曲面S与平面∏之间的最短距离.
设A是m×n矩阵,B=λE+ATA,证明当λ>0时,B是正定矩阵.
计算下列定积分:(Ⅰ)dx;(Ⅱ);(Ⅲ)dx;(Ⅳ)dx.
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设f(x)在[-2,2]上有连续的导数,且f(0)=0,F(x)=f(x+t)dt,证明级数绝对收敛.
设有参数方程0≤t≤π.(Ⅰ)求证该参数方程确定y=y(x),并求定义域;(Ⅱ)讨论y=y(x)的可导性与单调性;(Ⅲ)讨论y=y(x)的凹凸性.
如图1-3-2所示,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4)。设函数f(x)具有三阶连续导数,计算定积分
设f(x)是连续函数。(Ⅰ)利用定义证明函数F(x)=可导,且F’(x)=f(x);(Ⅱ)当f(x)是以2为周期的周期函数时,证明函数G(x)=也是以2为周期的周期函数。
讨论下列函数的连续性并判断间断点的类型:(I)y=(1+x)arctan;(II)y=-x);(Ⅲ)y=(Ⅳ)=f(x)=,x∈(0,2π);(Ⅴ)y=f[g(x)],其中f(x)=
已知向量a,b的模分别为|a|=2,|b|=,且a.b=2,则|a×b|=()
随机试题
设a为n维非零列向量,证明:A可逆并求A-1;
记载新人监罪犯基本情况的表格类文书是
房地产品的市场交易包括出售和出租两种转移形式。()
工程竣工后将《单位工程施工组织设计》整理归档的单位是()。
某通信枢纽的通信机房,采用组合分配式高压二氧化碳全淹没气体灭火系统。系统服务6个防护区,共有216组钢瓶(其中108组钢瓶为备用),钢瓶间在建筑的四层,5个防护区位于建筑物的四至六层。根据以上情景,回答下列问题。简述安全泄放装置的作用以及安装的位置。
财产税类包括房产税、契税、关税等。()
Theveryloansthataresupposedtohelpseniorsstayintheirhomesareinmanycasespushingthemout.Reversemortgages,which
设曲线L位于xOy平面的第一象限内,L上任意一点M处的切线与y轴总相交,交点为A,已知|MA|=|OA|,且L经过点(3/2,3/2),求L的方程.
MysecretaryaskedmeifIhadanythingelseforher(type)______beforesheleft.
A、Citygovernments.B、Lawmakers.C、Thecitizensofthecity.D、Dogowners.D
最新回复
(
0
)