首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
admin
2015-06-29
55
问题
设A为三阶矩阵,方程组AX=0的基础解系为α
1
,α
2
,又λ=一2为A的一个特征值,其对应的特征向量为α
3
,下列向量中是A的特征向量的是( ).
选项
A、α
1
+α
3
B、3α
3
一α
1
C、α
1
+2α
2
+3α
3
D、2α
1
-3α
2
答案
D
解析
因为AX=0有非零解,所以,r(A)<n,故0为矩阵A的特征值,α
1
,α
2
为特征值0所对应的线性无关的特征向量,显然特征值0为二重特征值,若α
1
+α
3
为属于特征值λ
0
的特征向量,则有A(α
1
+α
3
)=λ
0
(α
1
+α
3
),注意到
A(α
1
+α
3
)=Oα
1
一2α
3
=一2α
3
,故一2α
3
=λ
0
(α
1
+α
3
)或λ
0
α
1
+(λ
0
+2)α
3
=0,
因为α
1
,α
3
线性无关,所以有λ
0
=0,λ
0
+2=0,矛盾,故α
1
+α
3
不是特征向量,同理可证3α
3
一α
1
及α
1
+2α
2
+3α
3
也不是特征向量,显然2α
1
一3α
2
为特征值0对应的特征向量,选(D).
转载请注明原文地址:https://kaotiyun.com/show/4454777K
0
考研数学一
相关试题推荐
设α,β为n维单位列向量,P是n阶可逆矩阵,则下列矩阵中可逆的是().
设A为3阶矩阵,α1,α2,α3为线性无关的三维列向量,且满足Aα1=1/2α1+2/3α2+α3,Aα2=2/3α2+1/2α3,Aα3=-1/6α3.根据(1)中的矩阵B,证明A与B相似;
设A是n阶矩阵,满足A2=A,且r(A)=r(0<r≤n).证明:其中Er是r阶单位矩阵.
求的特征值、特征向量,判断A能否相似对角化,若能对角化,则求出可逆矩阵P,使得P-1AP为对角矩阵.
设A是m×n矩阵,B是n×m矩阵,已知Em+AB可逆.设,其中a1b1+a2b2+a3b3=0,证明W可逆,并求W-1.
设A,B均是n阶矩阵,且AB=A+B.证明A-E可逆,并求(A-E)-1.
已知方程组及方程组(Ⅱ)的通解为k1[-1,1,1,0]T+k2[2,-1,0,1]T+[-2,-3,0,0]T.求方程组(Ⅰ),(Ⅱ)的公共解.
已知线性方程组问a满足什么条件时,方程组有唯一解?并给出唯一解.
随机试题
诊鱼际络脉可以候
关于尿路感染的易感因素,下列哪项说法是不恰当的
绷带包扎的作用包括
避孕片1号每片含复方18甲基炔诺酮每片含
“经营单位”栏应填;“集装箱号”栏应填:
某一次还本付息债券的票面额为1000元,票面利率10%,必要收益率为12%,期限为5年,如果按复利计息,复利贴现,其内在价值为()元。
甲公司为上市公司,其20×2年度财务报告于20×3年3月1日对外报出。该公司在20×2年12月31日有一项未决诉讼,经咨询律师,估计很可能败诉并预计将支付的赔偿金额、诉讼费等在760万元至1000万元之间(各金额发生的可能性相同,其中诉讼费为7万元)。为此
董事会中大部分成员是独立董事,独立董事的职责不包括以下哪项()。
Competentstudentsarethosewhocanseetheapplicationofatheoryoraconcepttoaspecific______example.
Haveyoueverwonderedwhatourfutureislike?Practicallyallpeople【C1】______adesiretopredicttheirfuture【C2】______.Peop
最新回复
(
0
)