首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B是两个n阶实对称矩阵,并且A正定.证明: (1)存在可逆矩阵P,使得PTAP,PTBP都是对角矩阵; (2)当|ε|充分小时,A+εB仍是正定矩阵.
设A,B是两个n阶实对称矩阵,并且A正定.证明: (1)存在可逆矩阵P,使得PTAP,PTBP都是对角矩阵; (2)当|ε|充分小时,A+εB仍是正定矩阵.
admin
2018-06-27
95
问题
设A,B是两个n阶实对称矩阵,并且A正定.证明:
(1)存在可逆矩阵P,使得P
T
AP,P
T
BP都是对角矩阵;
(2)当|ε|充分小时,A+εB仍是正定矩阵.
选项
答案
(1)因为A正定,所以存在实可逆矩阵P,使得P
1
T
AP
1
=E.作B
1
=P
1
T
BP
1
,则B
1
仍是实对称矩阵,从而存在正交矩阵Q,使得Q
T
BQ是对角矩阵.令P=P
1
Q,则 P
T
AP=Q
T
P
1
T
AP
1
Q=E,P
T
BP=Q
T
P
1
T
BP
1
Q=Q
T
B
1
Q.因此P即所求. (2)设对(1)中求得的可逆矩阵P,对角矩阵P
T
BP对角线上的元素依次为λ
1
,λ
2
,…,λ
n
,记 M=max{|λ
1
|,|λ
2
|,…,|λ
n
|}. 则当|ε|<1/M时,E+εP
T
BP仍是实对角矩阵,且对角线上元素1+ελ
i
>0,i=1,2,…,n.于是E+εP
T
BP正定,P
T
(A+εB)P=E+εP
T
BP,因此A+εB也正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/44k4777K
0
考研数学二
相关试题推荐
下列矩阵中两两相似的是
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+Py’+qy=f(x)的三个特解.求这个方程和它的通解:
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:BTB是正定矩阵.
设函数f(u)具有2阶连续导数,z=f(excosy)满足=(4z+excosy)e2x.若f(0)=0,f’(0)=0,求f(u)的表达式.
设3维向量组α1,α2线性无关,β1,β2线性无关.证明:存在非零3维向量ξ1,ξ2既可由α1,α2线性表出,也可由β1,β2线性表出;
设f(x)在x=0处存在2阶导数,且f(0)=0,f’(0)=0,f’’(0)≠0.则()
设f(x,y)在点(0,0)处连续,且其中a,b,C为常数.(1)讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);(2)讨论f(x,y)在点(0,0)处是否取极值,说明理由.
设一1<x1<0,xn+1=xn2+2xn(n=0,1,2,…).证明数列{xn}的极限存在,并求此极限值.
(2002年)设0<χ1<3,χn+1=(n=1,2,…),证明数列{χn}的极限存在,并求此极限.
随机试题
食品店在中秋节要准备一批月饼,单位成本为10元,售价20元.未售出的月饼只能在节后处理,每单位按4元处理.周边居民对月饼的需求量可能有3种情况:400(单位),700(单位),1200(单位),试用算术平均准则确定批发商应订购多少单位月饼.
患儿,男,6个月。吐奶拒食、嗜睡2天。查体:面色青灰,前囟紧张,脐部少许脓性分泌物。为确诊最重要的检查是
蛋白质一级结构中的主要化学键连接胰岛素A、B两条链的化学键是
拆除跨度为7m的现浇钢筋混凝土梁的底模及支架时,其混凝土强度至少是混凝土设计抗压强度标准值的()。
()是指关于遗产由谁继承、继承哪项遗产及继承多少由被继承人依自己的意志立下的遗嘱来确定。
交易双方在场外市场上通过协商,按约定价格在约定的未来日期(交割日)买卖某种标的金融资产(或金融变量)的合约是()。
某宾馆为了8月8日的开业庆典,于8月7日向电视台租借一台摄像机。庆典之日,工作人员不慎摔坏摄像机,宾馆决定按原价买下,以抵偿电视台的损失,遂于8月9日通过电话向电视台负责人表明此意,对方表示同意。8月15日,宾馆依约定向电视台支付了价款。摄像机所有权何时转
下列几种存储器中,存取周期最短的是()。
设定本地IP地址为:203.112.88.158;子网掩码:255.255.255.0。
SpeakerA:I’dliketoexchangethesejeansplease.SpeakerB:______
最新回复
(
0
)