首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知曲线在直角坐标系中由参数方程给出:χ=t+e-t,y=2t+e-2t(t≥0). (Ⅰ) 证明该参数方程确定连续函数y=y(χ),χ∈[1,+∞). (Ⅱ) 证明y=y(χ)在[1,+∞)单调上升且是凸的. (Ⅲ) 求y=
已知曲线在直角坐标系中由参数方程给出:χ=t+e-t,y=2t+e-2t(t≥0). (Ⅰ) 证明该参数方程确定连续函数y=y(χ),χ∈[1,+∞). (Ⅱ) 证明y=y(χ)在[1,+∞)单调上升且是凸的. (Ⅲ) 求y=
admin
2016-07-20
124
问题
已知曲线在直角坐标系中由参数方程给出:χ=t+e
-t
,y=2t+e
-2t
(t≥0).
(Ⅰ) 证明该参数方程确定连续函数y=y(χ),χ∈[1,+∞).
(Ⅱ) 证明y=y(χ)在[1,+∞)单调上升且是凸的.
(Ⅲ) 求y=y(χ)的渐近线.
选项
答案
(Ⅰ)因为χ′
t
=1-e
-t
>0(t>0),χ′
t
(0)=0[*]χt+e
-t
在[0,+∞)单调上升,值域为[1,+∞).[*]χ=t+e
-t
在[0,+∞)存在反函数,记为t=t(χ),它在[1,+∞)连续(单调连续函数的反函数连续).再由连续的复合函数的连续性[*]y=2t(χ)+e
-2t(χ)
[*]y(χ)在[1,+∞)连续. (Ⅱ)由参数式求导法 [*] 于是y=y(χ)在[1,+∞)单调上升.又 [*] 因此y=y(χ)在[1,+∞)是凸的. [*] 又因y=y(χ)在[1,+∞)连续,所以y=y(χ)只有渐近线y=2χ.
解析
转载请注明原文地址:https://kaotiyun.com/show/4Mw4777K
0
考研数学一
相关试题推荐
设微分方程y’2-2yy’’=1满足y(0)=y’(0)=1的解为y(x),曲线y=y(x)与x=1及坐标轴所围图形为D求y=y(x);
设积分I-dx(a>b>0)收敛,则()
设f(x)在[0,1]上有二阶连续导数,则下列说法正确的是()①若f’’(x)>0,则∫01f(x)dx>f(1/2)②若f’’(x)>0,则∫01f(x)dx<f(1/2)③若f’’(x)<0,则∫01f(x)dx>f(
设y=f(x)由参数方程确定,则nf(2/n)=________
设函数f(x)在(-∞,﹢∞)内有定义,且对任意x,y,有f(x+y)-f(x)=[f(x)-1]y+a(y),其中=0,f(0)=2,则f(1)=()
设飞机以匀速ν(ν为常数)沿垂直于x轴的方向向上飞行,飞机在(a,0)(a>0)处被发现,随即从原点(0,0)处发射导弹,导弹的速度为2ν,方向始终指向飞机,如图所示求导弹自发射到击中飞机所需时间T
设α,β是3维单位正交列向量,则二次型f(x1,x2,x3)=xT(2ααT+ββT)x的规范形为()
求微分方程满足初始条件y(1)=0的特解.
函数u(x,y,z)=ln(x+)在点A(1,0,1)处沿点A指向B(3,-2,2)的方向导数为________.
设f(x)为连续函数,则在x=0处,下列正确的是().
随机试题
1912年元月南京临时政府在总统府设立秘书处根据的是
简述行政单位领拨经费的两种方式以及这两种方式的区别。
慢性血吸虫肝病最常见的CT特征是
下列各项中,属于工资管理模块提供的主要报表有()。
英译汉:“fowl cholera;rinderpest;swine fevet”,正确的翻译为( )。
()也被称为“酸性测试比率”。
简述概化理论研究中G研究和D研究的含义及其研究内容。
依据我国现行宪法规定,公民在行使自由和权利时不得损害()。(2011多53)
访问控制列表(ACL)配置如下,如果来自因特网的HTTP报文的目标地址是162.15.10.10,经过这个ACL过滤后会出现什么情况?(58)
A、Theback.B、Theabdomen.C、Theknees.D、Thelegs.A事实细节的找寻和判断。根据原文Toliftsomethingfromthefloorcorrectly,firstbendyour
最新回复
(
0
)