首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的通解为[2,1,0,1]T+k[1,一1,2,0]T.记 αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5. 问 : α4能否由α1,α2,α3线性
已知线性方程组 的通解为[2,1,0,1]T+k[1,一1,2,0]T.记 αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5. 问 : α4能否由α1,α2,α3线性
admin
2018-11-11
21
问题
已知线性方程组
的通解为[2,1,0,1]
T
+k[1,一1,2,0]
T
.记
α
j
=[a
1j
,a
2j
,a
3j
,a
4j
]
T
,j=1,2,…,5.
问 :
α
4
能否由α
1
,α
2
,α
3
线性表出,说明理由.
选项
答案
α
4
不能由α
1
,α
2
,α
3
线性表出.因对应齐次方程的基础解系只有一个非零向量,故r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
,α
4
,α
5
)=4—1=3,且由对应齐次方程的通解知α
1
一α
2
+2α
3
=0,即α
1
,α
2
,α
3
线性相关,r(α
1
,α
2
,α
3
)<3,若α
4
能由α
1
,α
2
,α
3
线性表出,则r(α
4
,α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
)<3,这和r(α
1
,α
2
,α
3
,α
4
)=3矛盾,故α
4
不能由α
1
,α
2
,α
3
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/4Rj4777K
0
考研数学二
相关试题推荐
计算在第一卦限的部分.
求微分方程xdy+(x一2y)dx=0的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2以及x轴所围成的平面图形绕x轴旋转一周的旋转体体积最小.
(1)验证函数(一∞<x<+∞)满足微分方程y”+y’+y=ex;(2)利用(1)的结果求幂级数的和函数.
设A2一3A+2E=O,证明:A的特征值只能取1或2.
设n阶可逆矩阵A的一个特征值是一3,则矩阵必有一个特征值为__________.
设已知线性方程组Ax=b,存在两个不同的解.求λ,a;
设A=E一ξξT,其中E是n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设函数f(u)在(0,+∞)内有二阶导数,且(1)验证(2)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
设曲线y=ax2(x≥0,常数a>0)与曲线y=1一x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D,求(1)D绕x轴旋转一周所成的旋转体的体积V(a);(2)a的值,使V(a)为最大.
设4元线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1).(1)求线性方程组(Ⅰ)的基础解系;(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,则说明理由.
随机试题
当运动员的唤醒水平处于哪种状态时,有利于运动水平的发挥?()
我国农村最低生活保障标准确定时应重点考虑哪些因素?
下列有关债权让与的说法,正确的是()
A.ELISA检测核心抗原p24B.免疫印迹法检测HIV抗体C.CD4+T细胞计数D.ELISA法检测HIV抗体E.HIV病毒载量检测用于HIV感染的确认试验
A.1900B.1830C.0.344μgD.0.300μgE.1530
甲犯抢劫、盗窃二罪,分别被判处有期徒刑8年、6年,数罪并罚决定执行有期徒刑12年。执行2年后,又发现甲在判刑前还犯过诈骗罪和敲诈勒索罪,分别应处2年和3年有期徒刑。对甲数罪并罚时决定执行的刑期幅度是( )。
某企业由于生产工艺需要采用以液氨作为制冷剂的氨制冷系统,该制冷系统包括压缩机房、设备间、氨储罐等设施。生产车间设置有酸、碱危险化学品储罐,包装车间内有可燃粉尘危险存在。下列该企业根据工艺特点对存在的职业病危害因素采取的相应措施中,错误的是()。
临时室内消防给水系统消防竖管的管径不应小于()
某企业资产总额为1800万元,当发生下列两笔经济业务后:(1)向银行借款偿还应付账款50万元;(2)收回应收账款420万元存入银行。其资产总额为()。
A、Acar.B、Acow.C、Abook.D、Atable.C题目询问男士在寻找什么。男士说“Whereisthatbookaboutears?”(我那本关于汽车的书在哪里?),因此他找的是书,而不是其他的,因此选项C(书)为正
最新回复
(
0
)